Protein Oxidation of Fucose Environments (POFE) Reveals Fucose-protein Interactions

Yixuan Xie^{1,2,*}, Siyu Chen^{1,*}, Michael Russelle Alvarez¹, Ying Sheng¹, Qiongyu Li¹, Emanual Maverakis³, Carlito B. Lebrilla^{1,4}

¹Department of Chemistry, University of California, Davis, Davis, California, United States. ²Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States.

³Department of Dermatology, University of California, Davis, Sacramento, California, USA.

⁴Department of Biochemistry, University of California, Davis, Davis, California, United States.

* These authors contributed equally to this work

Correspondence and requests for materials should be addressed to C.B.L. (email: cblebrilla@ucdavis.edu)

Table of content

Methods

Schematic 1. Synthesis of the Az-FeBABE probe.

Figure S1. Tandem mass spectra of selected compounds (a) Hex₅HexNAc₄7AlkFuc₁Sia₂ and (b)

Hex₅HexNAc₄7AlkFuc₁Sia₁.

Figure S2. Dose-dependent gel-based profiles of PNT2 cells treated by 7AlkFuc.

Figure S3. Validation of the labeling of the fucose probes using confocal microscopy.

Figure S4. LC-MS profile of N-Glycans released from 6AlkFuc-treated PNT2 cells.

Figure S5. Validation of the labeling of the 6AzFuc probe using confocal microscopy.

Figure S6. The extent of background oxidation quantified by Byologic.

Figure S7. Annotated spectra of CD44 and BASI proteins in the control, H_2O_2 , and FeBABE- H_2O_2 treatments.

Figure S8. The extent of oxidation quantified by Byologic for selected proteins oxidized in PNT2 cells.

Figure S9. Proteins from PNT2 within the spatial environment of cell-surface fucose identified by POFE.

Figure S10. Interaction networks of PNT2.

Figure S11. Interaction networks of Caco-2.

Figure S12. Interaction networks of LGALS3 in PNT2.

Figure S13. Interaction networks of LGALS3 in Caco-2.

Figure S14. Annotated Location of identified proteins from PNT2.

Figure S15. Interaction network of the identified proteins in proximity to the cell-surface fucose.

Figure S16. Functional annotation of identified proteins from PNT2 by POFE.

Figure S17. The N-glycans associated with the five glycosylation sites of protein LG3BP identified from PNT2 cells.

Figure S18. Modeling statistics of LEG3 and LG3BP from HADDOCK. HADDOCK clustered (a) 115 structures in (b) 12 cluster(s), which represents 57 % of the water-refined models HADDOCK generated.

Figure S19. Modeling of glycan structures with or without the addition fucose.

Figure S20. Summary of the glycan-protein interaction maps between LEG3 and LG3BP-Asn511 N-glycans.

Methods

Cell culture. Human immortalized prostate epithelium PNT2 and human colon adenocarcinoma Caco-2 cells were obtained from American Type Culture Collection (ATCC, Manassas, VA). The PNT2 cells were cultured in Roswell Park Memorial Institute (RPMI) 1640 medium, and Caco-2 cells were grown in Eagle's Minimum Essential Medium (EMEM). The medium were supplemented with 10% (v/v) fetal bovine serum (FBS), 0.1% (v/v) penicillin and streptomycin, and 1% (v/v) GlutaMAX. Cells were maintained in a humidified incubator at 37°C with 5% CO₂ and subcultured at 80% confluency. For the fucose reporter treatment, cells were treated with 100 μ M of 6AlkFuc, 6AzFuc, or 7AlkFuc for 72 hours.

Confocal image analysis of fucose-labeled glycoproteins. The cells were seeded onto FluoroDish cell culture dishes (WPI, FL) coated with Poly-D-Lysine with appropriate density. At 40% confluency, cells were treated with 100 µM of fucose reporters supplemented growing media for 72 hours. Afterward, the treated cells were rinsed with phosphate-buffered saline (PBS) and treated with 50 µM of coumarin azide (for labeling alkynyl groups) or DBCO-Cy3 (for labeling azido groups) in PBS at room temperature for 1 hour, followed by the fixation with 4% paraformaldehyde at room temperature for 1 hour. The plasma membrane and the nucleus were stained with CellMask Deep Red plasma membrane stain and Hoechst 33342, respectively, at 37°C for 10 minutes. Fluorescent images were captured by Leica TCS SP8 STED 3X Super-Resolution Confocal Microscope (Wetzlar, Germany).

Schematic 1. Synthesis of the Az-FeBABE probe.

Figure S1. Tandem mass spectra of selected compounds (a) $Hex_{(5)}HexNAc_{(4)}7AlkFuc_{(1)}Sia_{(2)}$ and (b) $Hex_{(5)}HexNAc_{(4)}7AlkFuc_{(1)}Sia_{(1)}$. The glycan structures and fragments were annotated using GlycoNote.

Figure S2. Dose-dependent gel-based profiles of PNT2 cells treated by 7AlkFuc. The cells were incubated for varying amounts of probe (0, 12.5, 25, 50, 100, and 200 μ M). Corresponding expression profiles are shown after Coomassie staining. Concentrations and molecular weight markers are indicated.

Figure S3. Validation of the labeling of the fucose probes using confocal microscopy. PNT2 Cells were treated with DMSO (**top**), 6AlkFuc (**middle**), and 7AlkFuc (**bottom**). The cell membrane was stained with CellMask[™] Deep Red Plasma membrane Stain.

Figure S4. LC-MS profile of N-Glycans released from 6AlkFuc-treated PNT2 cells. Annotated

structures are putative based on mass and composition. LC-MS peaks were color coded to assign glycan subtypes.

Figure S5. Validation of the labeling of the 6AzFuc probe using confocal microscopy. The incorporated azido group was labeled using DBCO-cy3. And the cell membrane and nucleus were stained with CellMask[™] Deep Red Plasma membrane Stain and Hoechst 33342, respectively.

Figure S6. The extent of background oxidation quantified by Byologic. All experiments (including controls) were conducted in copper-environments to account for background oxidation by copper.

Figure S7. Annotated spectra of CD44 and BASI proteins in the control, H₂O₂, and FeBABE-

 H_2O_2 treatments.

Figure S8. The extent of oxidation quantified by Byologic for selected proteins oxidized in **PNT2 cells.** Each column represents one treatment condition, and each row represents one oxidation site of a selected protein.

Figure S9. Proteins from PNT2 within the spatial environment of cell-surface fucose identified by POFE. The spatial information was revealed by different H₂O₂ treatment time. Proteins with different spatial distances (reported as unit of time) relative to the fucose were labeled with different colors. Colors correspond to incubation time: 5 minutes (red), 10 minutes (blue), 15 minutes (green), and 30 minutes (orange).

Figure S10. Interaction networks of PNT2. Proteins are categorized and color-coded into different biological pathways based on being the Source protein (green) or as Molecular Functions: Carbohydrate binding (blue), Signaling (yellow), Cell adhesion (pink), Cell adhesion and signaling (orange), and Other pathways (white).

Figure S11. Interaction networks of Caco-2. Proteins are categorized and color-coded into different biological pathways based on being the Source protein (green) or as Molecular Functions: Carbohydrate binding (blue), Signaling (yellow), Cell adhesion (pink), Cell adhesion and signaling (orange), and Other pathways (white).

PNT2

Figure S12. Interaction networks of LGALS3 in PNT2. Proteins are categorized and colorcoded into different biological pathways based on being the Source protein (green) or as Molecular Functions: Carbohydrate binding (blue), Signaling (yellow), Cell adhesion (pink), Cell adhesion and signaling (orange), and Other pathways (white).

Figure S13. Interaction networks of LGALS3 in Caco-2. Proteins are categorized and colorcoded into different biological pathways based on being the Source protein (green) or as Molecular Functions: Carbohydrate binding (blue), Signaling (yellow), Cell adhesion (pink), Cell adhesion and signaling (orange), and Other pathways (white).

Figure S14. Annotated Location of identified proteins from PNT2. (a) The annotated subcellular location of oxidized proteins (level 3) by Gene Ontology (GO). **(b)** The predicted protein region distribution of oxidized proteins (level 3) by DeepTMHMM.

Figure S15. Interaction network of the identified proteins in proximity to the cell-surface fucose. All the interactions were identified by STRING and visualized by Cytoscape.

(b)

Figure S16. Functional annotation of identified proteins from PNT2 by POFE. (a) Molecular

functions of the identified proteins. (b) Binding function of the identified proteins.

Figure S17. The N-glycans associated with the five glycosylation sites of protein LG3BP

identified from PNT2 cells. Putative glycan structures were assigned for each site.

Figure S18. Modeling statistics of LEG3 and LG3BP from HADDOCK. HADDOCK clustered (a) 115 structures in (b) 12 cluster(s), which represents 57 % of the water-refined models HADDOCK generated.

Fucose changes conformation of N-glycan core [Man- β -(1->4)-GlcNAc- β -(1->4)]

RMSD₇₆₀₀₋₇₆₁₀ = 0.826 (309 atoms)

RMSD₇₆₀₀₋₇₆₀₁ = 0.338 (309 atoms)

RMSD₇₆₀₀₋₇₆₁₁ = 0.850 (309 atoms)

Figure S19. Modeling of glycan structures with or without the addition fucose. The conformation of fucosylated N-glycan structures significantly changed compared to the undecorated N-glycan.

Figure S20. Summary of the glycan-protein interaction maps between LEG3 and LG3BP-Asn511 N-glycans. The domain information for LEG3 was obtained from Uniprot. The Nglycans were found to interact primarily with the Galectin domain of LEG3.