Electronic Supplementary Material (ESI) for Sensors & Diagnostics. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

Consequence of doping mediated Oxygen vacancies on charge transfer ability of Zinc Oxide Nanosheets for electrochemical glucose sensing

Saptaka Baruah^a, Bidyarani Maibam^a, Jyoti Jaiswal^a, Ankit Kumar^b, and Sanjeev Kumar^a* ^aCentre for Advanced Research, Department of Physics, Rajiv Gandhi University, Arunachal Pradesh-791112, India.

^bDepartment of Mechanical & Industrial Engineering (MIED), IIT Roorkee, Roorkee 247667, India.

*Corresponding author email: sanjeev.kumar@rgu.ac.in

S1. Experimental details

S1.1 Synthesis of pristine-ZnO and Ag-doped ZnO nanosheets

In this work, pristine-ZnO, 1% Ag-doped ZnO (ZnO:Ag1), 2% Ag-doped ZnO (ZnO:Ag2), 3% Ag-doped ZnO (ZnO:Ag3), 4% Ag-doped ZnO (ZnO:Ag4) and 5% Ag-doped ZnO (ZnO:Ag5) were synthesized using hydrothermal method. To prepare these samples, firstly, 1 M Zn(NO₃)₂.6H₂O and 1 M AgNO₃ solutions were made in double-distilled water and mixed in proportionality as required. After that 5 M NaOH solution was added dropwise. The mixed solution was stirred continuously for 2 hours and then placed in a Teflon-lined stainless-steel autoclave and kept at 180 °C for 24 hours. The product was then rinsed with double-distilled water and dried for 24 hours at 100 °C before being calcined for 2 hours at 500 °C.

S1.2 Fabrication of ZnO/ITO and Ag-doped ZnO/ITO Electrodes

Indium Tin Oxide (ITO) coated glasses were used as a substrate material for the fabrication of working electrodes. At first, ITO substrates were dipped in ethanol and cleaned by a sonication process followed by thorough rinsing using double-distilled water. Now, for the fabrication of the ZnO/ITO electrode, 10 μ L solution of dispersed ZnO nanosheets was drop-casted onto ITO-coated glass. Likewise, 1% to 5% of Ag-doped ZnO electrodes were fabricated using the same process. Finally, the prepared electrodes were dried at room temperature for 24 hours.

S1.3 Immobilization of GO_x on the electrodes

For the application of enzymatic glucose sensing, prior to immobilization, freshly prepared GO_x solution (10 µL, 4 mg/mL) was dropped on the ZnO/ITO, ZnO:Ag2/ITO, and ZnO:Ag5/ITO electrodes, and then the electrodes were dried at room temperature for 30 min. To eliminate mobilized GO_x , the electrodes were rinsed with distilled water. Since the enzyme denatures when exposed to ambient temperature for an extended period, the immobilized electrode was stored at 4 °C when not in use.

S2. Results and discussion

S2.1 Characterization of synthesized pristine and Ag-doped ZnO nanosheets

Figure 2 shows the FESEM micrograph of the pristine and Ag-doped ZnO samples at low and high resolution (corresponding inset Figure 2). FESEM images (Figure 2(a-d)) revealed the development of nanosheets in pristine-ZnO, ZnO:Ag1, ZnO:Ag2, and ZnO:Ag3. While the mixture of nanosheets and dendrite-like structures were found in ZnO:Ag4 and ZnO:Ag5 (Figure 2(e,f)). Doping may cause the asymmetrical and multidimensional growth in ZnO:Ag4 and ZnO:Ag5 which result in the formation of dendrite-like structures [2]. The size and thickness of pristine-ZnO and Ag-doped ZnO nanosheets were found to decrease with an increase in dopant concentration. This is because metal-doping in ZnO at an appropriate level inhibits particle growth due to the symmetry-breaking effects of the dopant at the grain boundary [3, 4].

As shown in Figure S1(a), for pristine-ZnO, the EDX spectra revealed 47.80 at% of O, 52.20 at% of Zn. While spectra of ZnO:Ag5 (Figure S1(b)) revealed 44.82 at% of O and 52.46 at% of Zn and 2.72 at% of Ag with 6.61 wt%. EDX results further confirm the formation of pristine-ZnO and the successful incorporation of Ag dopants in the ZnO host matrix.

Figure S3 shows the FTIR spectra for the pristine-ZnO, GOx/ZnO, ZnO:Ag2, GOx/ZnO:Ag2, ZnO:Ag5, and GOx/ZnO:Ag5 samples. FTIR spectra of pristine-ZnO revealed the multiple bands observed at ~3439.18 cm⁻¹ (O-H stretching), ~1633.54 and ~1384 cm⁻¹ (H-O-H bending vibration), ~1029.78 cm⁻¹ (O-H bending mode), and ~557.68 and ~465 cm⁻¹ (stretching vibration of Zn-O) indicating the formation of ZnO including the presence of small quantity of moisture and hydroxyl group on the surface of ZnO [5-7]. However, for ZnO:Ag2 and ZnO:Ag5, a small shift towards the low frequencies was noted, which indicates the successful incorporation of Ag ions into the ZnO matrix [8]. The reduction in band intensity observed in Ag-doped ZnO may be due to the formation of Ag particles on the surface of pristine-ZnO [9, 10], which is also corroborated with our XRD results. Further, FTIR spectra of GOx/ZnO matrix demonstrated absorption bands at ~3455.17 cm⁻¹ (combination of both N-H and O-H stretching), ~2352.97 cm⁻¹ (N-H stretching vibration), ~1072.64 cm⁻¹ (phosphate ion adsorption), ~536.61 cm⁻¹ (stretching vibration of Zn-O), and three bands linked to the peptide structure, i.e., amide I ~1645.76 cm⁻¹ (C=O stretching and H-O-H bending vibration), amide II ~1551 cm⁻¹ (N-H bending) and amide III ~1241.3 (C-N and C-H stretching), which confirm the successful immobilization of GOx on the pristine-ZnO matrix [11, 12]. However, the same characteristic bands for GOx were also observed for GOx/ZnO:Ag2 and GOx/ZnO:Ag5 samples, signifying further the successful immobilization of GOx on the surface of the Ag-doped ZnO samples.

References

- Ridhuan, N. S., Razak, K. A., & Lockman, Z. (2018). Fabrication and characterization of glucose biosensors by using hydrothermally grown ZnO nanorods. *Scientific reports*, 8(1), 1-12.
- [2] Maibam, B., Baruah, S., & Kumar, S. (2020). Photoluminescence and intrinsic ferromagnetism of Fe doped zinc oxide. *SN Applied Sciences*, 2(10), 1-11.
- [3] Khan, M. M., Kumar, S., Khan, M. N., Ahamed, M., & Al Dwayyan, A. S. (2014). Microstructure and blueshift in optical band gap of nanocrystalline AlxZn1- xO thin films. *Journal of luminescence*, *155*, 275-281.
- [4] Ahamed, M., Khan, M. A., Akhtar, M. J., Alhadlaq, H. A., & Alshamsan, A. (2017). Agdoping regulates the cytotoxicity of TiO2 nanoparticles via oxidative stress in human cancer cells. *Scientific reports*, 7(1), 1-14.
- [5] Goswami, M., Adhikary, N. C., & Bhattacharjee, S. (2018). Effect of annealing temperatures on the structural and optical properties of zinc oxide nanoparticles prepared by chemical precipitation method. *Optik*, 158, 1006-1015.
- [6] Raja, K., Ramesh, P. S., & Geetha, D. (2014). Structural, FTIR and photoluminescence studies of Fe doped ZnO nanopowder by co-precipitation method. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 131, 183-188.
- [7] Reddy, A. J., Kokila, M. K., Nagabhushana, H., Chakradhar, R. P. S., Shivakumara, C., Rao, J. L., & Nagabhushana, B. M. (2011). Structural, optical and EPR studies on ZnO: Cu nanopowders prepared via low temperature solution combustion synthesis. *Journal* of Alloys and Compounds, 509(17), 5349-5355.
- [8] Wannes, H. B., Dimassi, W. R., Zaghouani, B., & Mendes, M. J. (2017). Li-doped ZnO Sol-Gel Thin Films: Correlation between Structural Morphological and Optical Properties. *J Textile Sci Eng*, 8(328), 2.

- [9] Nagaraju, G., Prashanth, S. A., Shastri, M., Yathish, K. V., Anupama, C., & Rangappa, D. (2017). Electrochemical heavy metal detection, photocatalytic, photoluminescence, biodiesel production and antibacterial activities of Ag–ZnO nanomaterial. *Materials Research Bulletin*, 94, 54-63.
- [10] Zamiri, R., Rebelo, A., Zamiri, G., Adnani, A., Kuashal, A., Belsley, M. S., & Ferreira, J. M. F. (2014). Far-infrared optical constants of ZnO and ZnO/Ag nanostructures. *RSC Advances*, 4(40), 20902-20908.
- [11] Singh, P., Benjakul, S., Maqsood, S., & Kishimura, H. (2011). Isolation and characterisation of collagen extracted from the skin of striped catfish (Pangasianodon hypophthalmus). *Food chemistry*, 124(1), 97-105.
- [12] Uc-Cayetano, E. G., Ordóñez, L. C., Cauich-Rodríguez, J. V., & Avilés, F. (2016). Enhancement of electrochemical glucose sensing by using multiwall carbon nanotubes decorated with iron oxide nanoparticles. *Int. J. Electrochem. Sci*, 11, 6356-6369.

Table

Table S1: Binding energy values of $Zn2p_{3/2}$, $Zn2p_{1/2}$, O1s, and the ratio of the sub-peaks area $\frac{O(II)}{O(I)+O(II)}$ for the pristine and Ag-doped ZnO nanosheets.

Sample	_	Ratio of sub-							
	Zn2p		O1s			Ag3d		peaks area	
	Zn2p _{3/2}	Zn2p _{1/2}	O(I)	O(II)	O(III)	Ag3d _{5/2}	Ag3d _{3/2}	0(II)/[0(I) + 0(II)]	
ZnO	~1021.15	~1044.1 5	~529.9 7	~531.2 4	~531. 9			~0.9	
ZnO:Ag5	~1020.92	~1043.9 2	~529.6 1	~530.7 1	~532. 7	~368.8 1	~374.8 1	~0.4	

Table S2: EIS parameters obtained by fitting the Nyquist plot with the equivalent circuit for the pristine and Ag-doped ZnO nanosheets based electrodes.

Sample	$C_{dl} \times 10^{-6} (\mathrm{F})$	$R_s(\Omega)$	$R_{ct}\left(\Omega ight)$	$Z_w imes 10^{-2} (\mathrm{Ss}^{1/2})$
ZnO/ITO	~6.1	~83.2	~148.4	~1.2
ZnO:Ag1/ITO	~2.9	~130.2	~131.8	~0.7
ZnO:Ag2/ITO	~8.9	~77.7	~114	~1.4
ZnO:Ag3/ITO	~6.6	~99.9	~101.6	~1.3
ZnO:Ag4/ITO	~5.3	~120	~82.6	~1.31
ZnO:Ag5/ITO	~10.2	~78.5	~51.9	~2.33

Table S3: The $\frac{I_{pa}}{I_{pc}}$ ratio at scan rate 10 mV/s, diffusion coefficient (*D*), surface concentration (*I*^{*}), electroactive surface area (*A_e*), sensitivity, Michaelis-Menten constant (K_m^{app}), limit of detection (LOD) and linear range of prepared electrodes.

Samples	I_{pa}/I_{pc}	$D \times 10^{-6}$ (cm ² s ⁻¹)	<i>I</i> * × 10 ⁻⁹ (mol cm ⁻²)	A_e (cm ²)	Sensitivity (µAMm ⁻¹ cm ⁻²)	K ^{app} (mM)	LOD (mM)	Linear range (mM)
ZnO/ITO	1.03	3.62	5.75	0.68	—			_
ZnO:Ag1/ITO	1.04	6.19	7.58	0.682	—			
ZnO:Ag2/ITO	1.02	6.82	8.33	0.713	—			
ZnO:Ag3/ITO	1.02	9.86	9.61	0.685	—	—	—	
ZnO:Ag4/ITO	1.03	13.9	11.4	0.686	—			
ZnO:Ag5/ITO	1.1	16.2	13.7	0.746	104.7		0.06	0-4
GOx/ZnO/ITO	1.05	3.29	4.97	0.618	37.5	0.07	0.204	0-3
GOx/ZnO:Ag2/ITO	1.02	4.32	6.30	0.683	15.3	0.04	0.451	0-3
GOx/ZnO:Ag5/ITO	1.05	6.12	5.38	0.487	98.3	0.26	0.098	0-3

Figures

Figure S1: EDX spectra of (a) pristine-ZnO and (b) ZnO:Ag5 nanosheets.

Figure S2: The XPS survey scan of the pristine-ZnO and ZnO:Ag5 nanosheets.

Figure S3: FTIR spectra for pristine-ZnO, GOx/ZnO, ZnO:Ag2, GOx/ZnO:Ag2, ZnO:Ag5, and GOx/ZnO:Ag5 samples.

Figure S4: Cyclic voltammogram (CV) of all the prepared electrodes: (a) ZnO/ITO, (b) ZnO:Ag1/ITO, (c) ZnO:Ag2/ITO, (d) ZnO:Ag3/ITO, (e) ZnO:Ag4/ITO, (f) ZnO:Ag5/ITO, (g) GOx/ZnO/ITO, (h) GOx/ZnO:Ag2/ITO, and (i) GOx/ZnO:Ag5/ITO in 0.01 M PBS (pH 7.4) buffer solution containing 5 mM $[Fe(CN)_6]^{3-/4-}$ at different scan rates within 10-100 mV s⁻¹.

Figure S5: Peak current vs scan rate of all the prepared electrodes: (a) ZnO/ITO, (b) ZnO:Ag1/ITO, (c) ZnO:Ag2/ITO, (d) ZnO:Ag3/ITO, (e) ZnO:Ag4/ITO, (f) ZnO:Ag5/ITO, (g) GOx/ZnO/ITO, (h) GOx/ZnO:Ag2/ITO, and (i) GOx/ZnO:Ag5/ITO.

Figure S6: Square wave voltammogram (SWV) of the (a) GOx/ZnO:Ag5/ITO and (b) ZnO:Ag5/ITO electrodes in the presence of 1 mM glucose with 0.5 mM interfering species (Cholesterol, Uric Acid (UA) and Ascorbic Acid (AA)) in 0.01 M PBS (pH 7.4) buffer solution containing 5 mM [Fe(CN)₆]^{3-/4-}. SWV of the (c) GOx/ZnO:Ag5/ITO and (d) ZnO:Ag5/ITO electrodes at different temperatures (5-60 °C) in 0.01 M PBS (pH 7.4) buffer solution containing 5 mM [Fe(CN)₆]^{3-/4-} and 1 mM glucose.

Figure S7: CV of the GOx/ZnO:Ag5/ITO (a) and ZnO:Ag5/ITO (b) electrodes with 10 measurements at scan rate of 50 mV s⁻¹ in 0.01 M PBS (pH 7.4) buffer solution containing 5 mM $[Fe(CN)_6]^{3-/4-}$ and 1 mM glucose. CV of five different GOx/ZnO:Ag5/ITO (c) and ZnO:Ag5/ITO (d) electrodes at scan rate of 50 mV s⁻¹ in 0.01 M PBS (pH 7.4) buffer solution containing 5 mM $[Fe(CN)_6]^{3-/4-}$ and 1 mM glucose.