SUPPLEMENTARY INFORMATION (ESI)

A Novel Point-of-Care Diagnostic Prototype System for the Simultaneous Electrochemiluminescent Sensing of Multiple Traumatic Brain Injury Biomarkers

Milica Jović,^a Denis Prim,^a Ophélie Righini,^a David Tagan,^b Mélanie Stäuble,^a Marc Pignat,^b Steve Gallay,^b Martial Geiser^c and Marc E. Pfeifer^a*

^o Diagnostic Systems Research Group, Institute of Life Technologies, School of Engineering, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), Rue de l'Industrie 23, 1950 Sion, Switzerland

^b Institute of Systems Engineering, School of Engineering, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), Rue de l'Industrie 23, 1950 Sion, Switzerland

^c Y-YBAR, Rue de la Dixence 10, 1950 Sion, Switzerland

E-mail addresses: milica.jovic@hevs.ch (M. Jović); denis.prim@hevs.ch (D. Prim); ophelie.righini@hevs.ch (O. Righini); david.tagan@hevs.ch (D. Tagan); melanie.staeuble@master.hes-so.ch (M. Stäuble); marc.pignat@hevs.ch (M. Pignat); steve.gallay@hevs.ch (S. Gallay); martial.geiser@y-ybar.com (M. Geiser), marc.pfeifer@hevs.ch (M. Pfeifer).

* Corresponding author: marc.pfeifer@hevs.ch (M. Pfeifer); Tel.: +41-58-606-86-61

SI-1: Schematic representation of the prototype design.		
SI-2: CAD drawings of the prototype components.		
SI-3: Software interface.	4	
SI-4: Concept of the ECL microarray.	5	
SI-5: Immunoassay conditions.	6	
SI-6: Brief overview of recent publications reported on miniaturized ECL systems/devices.	7	
References	9	

SI-1: Schematic representation of the prototype design.

SI-2: CAD drawings of the prototype components.

CAD drawings of prototype components fabricated at the Institute of Systems Engineering, School of Engineering, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis). Design and copyrights HES-SO Valais-Wallis.

SI-3: Software interface.

TBI-Dx - ver	sion 0.0.4-7		
Hes π Schoo		BRIDGE	
age		Preview	
Exposition Binning mulus	2.00 ♀ seconds 4 ▼ pixels		
Duration /oltage	1.00seconds1.55volts		
Destination /h	ome/pim/Documents		Browse

SI-4: Concept of the ECL microarray.

To conceptually show the advantage of the ECL microarray approach over conventional assays, an experiment was performed using a GFAP sandwich immunoassay (blank and 50 ng mL⁻¹) where the same amount of capture antibodies was spotted on three different spots on SPCE: Spot 1 (12.56 mm²), Spot 2 (0.70 mm²), and Spot 3 (0.15 mm²). The amount of cAb in each spot was equal, while the cAb density/spot was increasing with the decreasing spot size.

The signal-to-blank (S/B) ratios were increasing with the increase of cAb density/spot (or decrease of the spot surface), in the order: Spot 1 > Spot 2 > Spot 3, confirming the advantage of the microarray approach over classical assays.

Spot No.	Spot 1	Spot 2	Spot 3
Surface area of the spot	12.56 mm ²	0.70 mm ²	0.15 mm ²
Spotted volume of cAb	30'000 nL	126 nL	14 nL
Number of drops	1	360 drops x 350 pL	40 drops x 350 pL
Spotted concentration of cAb	0.05 μg mL ⁻¹	11.11 μg mL ⁻¹	100.00 μg mL ⁻¹
cAb amount/spot	1.40 ng	1.40 ng	1.40 ng
cAb density/spot	0.11 ng mm ⁻²	2.00 ng mm ⁻²	9.33 ng mm ⁻²

a) Photos of SPCEs with different spots of GFAP capture antibodies obtained with the camera from S3 contactless nano-spotting device Scienion AG. Blue circles represent the spot area on carbon working electrodes (WE); b) ECL images from SPCEs obtained for the GFAP sandwich immunoassay. Antigen concentrations were 0 and 50 ng mL⁻¹. ECL signals were obtained using chronoamperometry at 1.55 V, and acquisition time of 15 seconds. ECL image was processed with Ice palette in ImageJ for easier observation of details. c) Signal-to-blank (S/B) ratios obtained for the GFAP sandwich assay from Spot 1, Spot 2, and Spot 3.

SI-5: Immunoassay conditions.

CRP singleplex assay

cAb diluent	PBS 1X + 5% v/v glycerol		
cAb concentrations	25 μg mL ⁻¹		
Blocking agent	PBS 1X + 1% BSA		
Antigen diluent	TRIS (pH 8.6) 50 mM + 1% BSA + 1 mM CaCl ₂		
Wash buffer	PBS 1X + 0.06% Tween-20		
dAb diluent	TRIS (pH 8.6) 50 mM + 1% BSA		
dAb concentrations	5 μg mL ⁻¹		
Read buffer	MSD Read buffer T 2X		

3-plex assay (GFAP, h-FABP, S100β)

cAb diluent	PBS 1X + 1 mM CaCl ₂ + 5% v/v glycerol	
cAb concentrations	100 μg mL ⁻¹	
Blocking agent	PBS 1X + 2% BSA + 1 mM CaCl ₂	
Antigen diluent	TRIS (pH 8.6) 50 mM + 0.1% BSA + 1 mM CaCl ₂	
Wash buffer	PBS 1X + 0.06% Tween-20	
dAb diluent	TRIS (pH 8.6) 50 mM + 0.1% BSA + 1 mM CaCl ₂	
dAb concentrations	5 μg mL ⁻¹	
Read buffer	MSD Read buffer T 2X	

SI-6: Brief overview of recent publications reported on miniaturized ECL systems/devices.

Note: Non-POC diagnostic type device publications were not considered.

Year	ECL system	Detector	Electrode	Analyte	LOD	Multianalyte detection	Ref.
2015	Luminol/H ₂ O ₂ Bu(bpy) ₂ ²⁺ /TPrA	CCD	BPE	TPrA	8.7 μM	No	1
2016	Luminol/H ₂ O ₂	Smartphone	BPE/GOD	H ₂ O ₂	1.75 μM	No	2
		•	·	Glucose	17 μM		
2016	Luminol/H ₂ O ₂	CCD	BPE/GOD	TPrA	1.265 μM	No	3
	Ru(bpy)₃²+/TPrA			H_2O_2	27 μM		
				Glucose	32 µM		
2016	Luminol/H ₂ O ₂	CCD	BPE/GOD	TPrA	85 μM	No	4
	Ru(bpy)₃²+/TPrA			H_2O_2	24 µM		
				Glucose	195 μM		
2016	Ru(bpy)₃²+/TPrA	CCD	Carbon	PSA	0.3 pg mL ⁻¹	Yes	5
				PSMA	0.535 pg mL ⁻¹		
				PF-4	0.42 pg mL ⁻¹		
2017	Luminol/H ₂ O ₂	CCD	BPE/GOD	H_2O_2	24 µM	No	6
				Glucose	23 µM		
2018	Luminol/H ₂ O ₂	Smartphone	SEES ITO	H_2O_2	0.27 μM	No	7
2019	Luminol/H ₂ O ₂	PMT	SEES	H_2O_2	0.26 μM	No	8
2021	Ru(bpy)₃²+/TPrA	Smartphone	BPE	Dopamine	2 µM	No	9
	Luminol/H ₂ O ₂	Photomultiplier		Choline	1.25 μM		
2024		tube	225/222		5.07 14		10
2021	Luminol/H ₂ O ₂	Smartphone	BPE/GOD	H ₂ O ₂	5.87 μM	No	10
2021	Luminal/IL O	Cmartabana	Locar induced	Glucose	0.138 μινι	No	11
2021	Luminol/H2O2	Smartphone			1.71 μινι 2.76 μ.Μ	NO	
			graphene SE	Vanthing	5.76 μivi		
				Donamine	1.25 μivi		
2021	Luminol/H ₂ O ₂	Smartnhone	Laser-induced	HaOa	4.36 μM	No	12
2021	Luminoly 11202	Smartphone	granhene BPF	Glucose	4.50 μM	NO	
			Braphene bi E	Choline	4.01 μM		
				Lactate	5.32 µM		
2021	Luminol/H ₂ O ₂	Smartphone	BPE	H ₂ O ₂	0.069 uM	No	13
	Luminol/O ₂			02	0.15 mg L ⁻¹		
				CO ₂	0.45 mg L ⁻¹		
				Glucose	0.31 μM		
2021	Luminol/H ₂ O ₂	Smartphone	BPE	Vitamin B12	0.109 μM*	Yes	14
				Vitamin C	0.96 µM*		
2022	Ru(bpy)₃²+/TPrA	Silicon PM	ITO/SNM	Dopamine	0.0035 μM	No	15
		module					
2022	IrpiqSQ/Procell	PMT	SPCE	CRP	4.2 μM	No	16
2022	Luminol/H ₂ O ₂	CMOS	SEES	Uric acid	26.09 μM	No	17
2022	Luminol/H ₂ O ₂	PMT	Graphene-based SE	Lactate	6.47 μM	No	18
		Smartphone					
2022	Luminol/H ₂ O ₂	Smartphone	BPE	Glucose	24 µM	Yes	19
				Choline	10 µM		
2023	Luminol/H ₂ O ₂	Smartphone	Carbon black-doped	Glucose	60 µM	No	20
			PLA				

2023	Luminol/H ₂ O ₂	Smartphone	Graphite pencil-	Cholesterol	15.71 μM	No	21
			based SE				
2023	Ru(bpy)₃²+/TPrA	sCMOS	SPCE	h-FABP	237 pg mL ⁻¹	Yes	This work
				GFAP	742 pg mL ⁻¹		
				\$100β	583 pg mL ⁻¹		

Abbreviations: BPE – bipolar electrode; CRP – C reactive protein; GOD – glucose oxidase; IrpiqSQ - [Ir(piq)2(pt-TOXT-Sq)]Cl where piq = 2-phenyl-iso-quinoline, and pt-TOXT-Sq = a pyridyltriazole ligand with trioxatridecane chain and squarate amide ethyl ester); ITO – indium tin oxide; PM – photomultiplier; PMT – photomultiplier tube; PF-4 – platelet factor-4; PLA – polylactic acid electrodes; PSA – prostate specific antigen ; PSMA – prostate specific membrane antigen ; SE – single electrode; SEES – single electrode electrochemical system; SNM – silica nanoporous membrane; SPCE – screen printed carbon electrode. *LOD for individual detection.

References

- 1 R. Liu, C. Zhang and M. Liu, Sensors and Actuators B: Chemical, 2015, 216, 255–262.
- 2 L. Chen, C. Zhang and D. Xing, Sensors and Actuators B: Chemical, 2016, 237, 308–317.
- 3 W. Guan, M. Liu and C. Zhang, *Biosensors and Bioelectronics*, 2016, **75**, 247–253.
- 4 M. Liu, R. Liu, D. Wang, C. Liu and C. Zhang, *Lab Chip*, 2016, **16**, 2860–2870.
- 5 K. Kadimisetty, I. M. Mosa, S. Malla, J. E. Satterwhite-Warden, T. M. Kuhns, R. C. Faria, N. H. Lee and J. F. Rusling, *Biosensors and Bioelectronics*, 2016, **77**, 188–193.
- 6 M. Liu, D. Wang, C. Liu, R. Liu, H. Li and C. Zhang, Sensors and Actuators B: Chemical, 2017, 246, 327–335.
- 7 W. Gao, K. Muzyka, X. Ma, B. Lou and G. Xu, Chem. Sci., 2018, 9, 3911–3916.
- 8 X. Ma, L. Qi, W. Gao, F. Yuan, Y. Xia, B. Lou and G. Xu, *Electrochimica Acta*, 2019, 308, 20–24.
- 9 M. Bhaiyya, M. B. Kulkarni, P. K. Pattnaik and S. Goel, *Luminescence*, 2022, **37**, 357–365.
- 10 M. Bhaiyya, P. Rewatkar, M. Salve, P. K. Pattnaik and S. Goel, *IEEE Transactions on NanoBioscience*, 2021, **20**, 79–85.
- 11 M. L. Bhaiyya, P. K. Pattnaik and S. Goel, *IEEE Transactions on Instrumentation and Measurement*, 2021, **70**, 1–8.
- 12 M. Bhaiyya, P. K. Pattnaik and S. Goel, *IEEE Transactions on Electron Devices*, 2021, **68**, 2447–2454.
- 13 M. Salve, A. Mandal, K. Amreen, B. V. V. S. N. P. Rao, P. K. Pattnaik and S. Goel, *IEEE Transactions* on *Instrumentation and Measurement*, 2021, **70**, 1–10.
- 14 M. Bhaiyya, P. K. Pattnaik and S. Goel, Sensors and Actuators A: Physical, 2021, 331, 112831.
- 15 L. Zhu, W. Fu, J. Chen, S. Li, X. Xie, Z. Zhang, J. Liu, L. Zhou, B. Su and X. Chen, Sensors and Actuators B: Chemical, 2022, 366, 131972.
- 16 L. D'Alton, S. Carrara, G. J. Barbante, D. Hoxley, D. J. Hayne, P. S. Francis and C. F. Hogan, *Bioelectrochemistry*, 2022, **146**, 108107.
- 17 R. Abbasi, J. Liu, S. Suarasan and S. Wachsmann-Hogiu, Lab Chip, 2022, 22, 994–1005.
- 18 M. Bhaiyya, P. Rewatkar, P. K. Pattnaik and S. Goel, J. Micromech. Microeng., 2022, 33, 024001.
- 19 M. Bhaiyya, P. K. Pattnaik and S. Goel, *Microchim Acta*, 2022, 189, 79.
- 20 D. Calabria, E. Lazzarini, A. Pace, I. Trozzi, M. Zangheri, S. Cinti, M. Difonzo, G. Valenti, M. Guardigli, F. Paolucci and M. Mirasoli, *Biosensors and Bioelectronics*, 2023, **227**, 115146.
- 21 M. Bhaiyya, P. S. Kumar, P. K. Pattnaik, K. Shankar and S. Goel, *IEEE Sensors Journal*, 2023, 23, 750–757.