Supporting Information

Enhancement of Functional Surface and Molecular Dynamics at Pt-rGO by Spacer 1,6-Hexanediamine for Precise Detection of Biomolecues: Uric acid as a Specimen Mohammad Razaul Karim^{a*}, Mohammad Jayed,^a Md. Zakariya Rahman Laskar,^a Md Murshed Bhuyan,^b Md. Saidul Islam^c, Shinya Hayami^c, Mohammed M. Rahman^d ^aDepartment of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh ^bDepartment Mechanical Engineering, Gachon University, South Korea ^cDepartment of Chemistry, GSST, Kumamoto University, Japan. ^dDepartment of Chemistry, King Abdulaziz University, Saudi Arabia Corresponding author: Tel: +8801750200968. E-mail: krazaul@yahoo.com

Figure S1: TEM image of HA-rGO-Pt

Figure S2: SEM (a) EDS (b) and EDS mapping area (c) for HA-rGO-Pt

Figure S3: XPS spectra or HA-rGO-Pt. C1s (a) O1s (b) N1s (c) and C2p (d)

Figure S4: Cyclic voltammograms of 10 mM [K ₄Fe(CN)₆]/[K ₃Fe(CN)₆] couple (1:1) with supporting 0.1 M KCl at various scan rat (a), and scan rate dependent peak currents (b).