Supporting information

An efficient detection of bilirubin in human serum through displacement approach

Nancy Singla, Manzoor Ahmad, Vishal Mahajan, Prabhpreet Singh and Subodh Kumar*

^aDepartment of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab, India

Figure S1: ¹ H NMR spectrum of NCI-1	Page 2
Figure S2: ¹ H NMR spectrum of Th-Y	Page 2
Figure S3: ¹ H NMR spectrum of probe THYQ	Page 3
Figure S4: ¹³ C NMR spectrum of probe THYQ	Page 3
Figure S5: HRMS of probe THYQ	Page 4
Figure S6: Emission spectra of THYQ in water- glycerol binary mixtures (λ_{ex} 420 nm); (B) Line plot of fluorescence intensity at 640 nm v/s the fraction of glycerol	Page 4
Figure S7: (A) Absorbance and (B) Emission spectra of THYQ with the change in pH; (C) The plot of the emission maxima at 500 nm v/s pH	Page 5
Figure S8: The fluorescence spectra of THYQ (10 μ M, HEPES buffer, pH 7.4) in the presence of 5 equivalents each of HSA, anions, thiols, amines and amino acids	Page 5
Figure S9: (A) The fluorescence spectra of THYQ-HSA complex; (B) Bar graph representing the FI at 555 nm in presence of 5 equivalents each of cations, anions, thiols, amines and amino acids	Page 5
Figure S10. Change in UV-Vis spectrum of THYQ (10 μ M, HEPES buffer) on addition of aliquots of HSA	Page 6
Figure S11: (A) The distribution of different species of complexes of THYQ with HAS; (B) The change in emission spectrum of HSA at 345 nm on successive addition of aliquots of probe THYQ (λ_{ex} 290 nm); (C) SPECFIT graph showing the distribution of different species of complexes of HSA with THYQ	Page 6
Figure S12: Possibility of FRET mechanism for Bilirubin (BR) detection	Page 6
Figure S13: The DLS spectra of THYQ /HSA in the presence of BR	Page 7
Figure S14: Effect of other proteins in the quantification of BR	Page 7
Table S1: Photophysical properties of THYQ (1 μ M) in solvents of varied polarity (E_T^{30} Kcal/mol)	Page 7-8
Table S2: Comparison of slopes of E_T^{30} value v/s Emission maxima of THYQ with literature reports	Page 8-9
Table S3: Comparison of performance of various fluorescence based systems for the detection of bilirubin	Page 9-10

Figure S1: ¹HNMR spectrum of NCI-1

Figure S2: ¹HNMR spectrum of TH-Y

Figure S3: ¹HNMR spectrum of THYQ

Figure S4: ¹³CNMR spectrum of THYQ

Figure S5: HRMS spectrum of THYQ

Figure S6: (A) Emission spectra of **THYQ** in water- glycerol binary mixtures (λ_{ex} 420 nm); (B) Line plot of fluorescence intensity at 640 nm v/s the fraction of glycerol

Figure S7: (A) Absorbance and (B) Emission spectra of **THYQ** with the change in pH; (C) The plot of the emission maxima at 500 nm v/s pH

Figure S8: The fluorescence spectra of THYQ (10 μ M, HEPES buffer, pH 7.4) in the presence of 5 equivalents each of HSA, anions, thiols, amines and amino acids

Figure S9: (A) The fluorescence spectra of **THYQ-HSA** complex; (B) Bar graph representing the FI at 555 nm in presence of 5 equivalents each of cations, anions, thiols, amines and amino acids

Figure S10: Change in UV-Vis spectrum of THYQ (10 μ M, HEPES buffer) on addition of aliquots of HSA

Figure S11: (A) The distribution of different species of complexes of **THYQ** with HSA; (B) The change in emission spectrum of HSA at 345 nm on successive addition of aliquots of probe **THYQ** (λ_{ex} 290 nm); (C) SPECFIT graph showing the distribution of different species of complexes of HSA with THYQ

Figure S12: Possibility of FRET mechanism for Bilirubin (BR) detection

Figure S13: The DLS spectra of THYQ /HSA in the presence of BR

Figure S14: Effect of other proteins in the quantification of BR

Solvent	E _T ³⁰	λ _{Abs} .	λ _{Em.} Max	E	Φ
	(Kcal/mol)	Max (nm)	(nm)	(M ⁻¹ cm ⁻¹)	(At 1 μM)
cyclohexane	30.9	414	510	11,900	18.38
toulene	33.9	427	527	17,100	20.34
Diethyl ether	34.5	416	538	21,900	29.61
THF	37.4	424	572	25,500	88.12
Ethyl acetate	38.1	415	570	24,700	41.76
CHC13	39.1	424	555	20,200	
DCM	40.7	422	581	28,100	52.31
acetone	42.2	427	594	27,800	84.92
DMF	43.2	435	610	29,900	70.87
DMSO	45.1	420,546	622	21,400 and 6,000	67.84
ACN	45.6	421,536	612	19,400 and 13,600	53.18

Table S1. Photophysical properties of THYQ (1µM) in solvents of varied polarities (E_T³⁰ Kcal/mol)

ethanol	51.9	430,537	626	19,000 and 15,300	7.70
methanol	55.4		636		7.70
Water	63.1	Broad band	weak band	6100	-

Table S2: Comparison of slopes of E_T³⁰ value v/s Emission maxima of THYQ with literature reports

S.	Ref	Structure	Slope	S.	Ref	Structure	Slope
No.			nm /E _T ³⁰	No.			nm /E _T ³⁰
1	Ref 1	N CHO C12H25	2.7	7	Ref 6	у-С-С-Сно	5.7
2	Ref 1	CHO C ₁₂ H ₂₅	4.6	8	Ref 7	CN CN CN	7.7
3	Ref 2	F,F O EtOOC	3.98	9	Ref 8		10.03
4	Ref 3		4.51	10	Ref 9	N CN CN	6.14
5	Ref 4		9.32	11	This Work		7.88
6	Ref 5		9.46				

References

- 1. C. Yu, X. Guo, X. Fang, N. Chen, Q. Wu, E. Hao and L. Jiao, Dyes Pigm., 2022, 197, 109838.
- 2. M. Collot, S. Bou, T.K. Fam, L. Richert, Y. Mély, L. Danglot and A.S. Klymchenko, *Anal. Chem.*, 2019, **91**, 1928–1935.
- 3. C.W. Song, U. Tamima, Y.J. Reo, M. Dai, S. Sarkar and K.H. Ahn, Dyes Pigm., 2019, 171, 107718.
- 4. H. Wang, L. Hu, S. Shen, K. Yu and Y. Wang, New J. Chem., 2021, 45, 21553–21556.
- 5. J. Yin, M. Peng, Y. Ma, R. Guo and W. Lin, Chem. Commun., 2018, 54, 12093–12096.
- 6. L. Yang, J. Wang, B. Liu, G. Han, H. Wang, L. Yang, J. Zhao, M.-Y. Han and Z. Zhang, Sens. Actuators B., 2021, 333, 129541.

- 7. Z. Zhan, W. Zhuang, Q. Lei, S. Li, W. Mao, M. Chen and W. Li, *Chem. Commun.*, 2022, **58**, 4020–4023.
- 8. X. Zhang, L. Yuan, J. Jiang, J. Hu, A. du Rietz, H. Cao, R. Zhang, X. Tian, F. Zhang, Y. Ma, Z. Zhang, K. Uvdal and Z. Hu, *Anal. Chem.*, 2020, **92**, 3613-3619.
- X. Shi, S.H. P. Sung, M.M. S. Lee, R.T. K. Kwok, H.H. Y. Sung, H. Liu, J.W. Y. Lam, I. D. Williams, B. Liu and B. Zhong Tang, *J. Mater. Chem. B.*, 2020, 8, 1516–1523.

Sr. Fluorescence pН FL Linear LOD Clinical [Ref], Year ON/OFF detection No System range Spiking /direct Organic molecule based probes 1. 7.4 "**O**N" Displacement 2-80 µM 68 nM direct This Work approach 2. Imine based 7.4 **"OFF"** 1 pM-2.8 pM 1,2017 spiking 500 µM "**O**N" 3. Probe+Fe³⁺ 7.2 76 nM 0-10 µM direct 2,2020 mixture used "ON" 4. Probe+Fe³⁺ 7.4 0–10 µM 33 nM direct 3, 2021 mixture used **"OFF"** 5. Amphiphilic 6.5 0-32 µM 330 nM spiking 4, 2023 molecule 7.4 "OFF" 0–60 µM 11.74 µM 5,2023 6. imidazole spiking derivative Nano-materials HSA stabilized 7.4 "OFF" 248 nM 7. 1-50 µM spiking 6,2014 gold nanoclusters Peroxidase 8.0 "OFF" 0.03-5.0 10 nM 8. spiking 7,2018 method μM 9. S.N-doped carbon 2.5 "ON" 0.2 -2.0 nM spiking 0.12 nM 8,2018 $dots + Fe^{3+}$ "ON" 10. BSA stabilized 11.4 0-70 μM 6.62 nM spiking 9,2018 copper nanocluster + Fe^{3+} **"OFF"** 11. L-cysteine capped 4.7 10.99 -1800 nM spiking 10, 2019 Mn doped ZnS_2 63.84 µM quantum dots "OFF" 12. N doped carbon 7.4 0-45 μM 89 nM spiking 11, 2021 dots glutathione ND **"OFF"** *ND 13. 9-800 µM 148 nM [12], 2021 capped copper nanoclusters 14. TPE hydrogel 7.4 "OFF" 0-8 µM 25 nM *ND [13], 2022 15. "ON" 0.7-3.6 µM competitive 5.0 85 nM spiking [14], 2022 binding of Cu²⁺

Table S3: Comparison of performance of various fluorescence based systems for the detection of bilirubin

*ND = not determined

References

 S. Ellairaja, K. Shenbagavalli, S. Ponmariappan and V.S. Vasantha, *Biosens. Bioelectron.*, 2017, 91, 82–88.

- 2. E. Ahmmed, A. Mondal, A. Sarkar, S. Chakraborty, S. Lohar, N.C. Saha, K. Dhara and P. Chattopadhyay, *ACS Appl. Bio Mater.*, 2020, **3**, 4074-4080.
- E. Ahmmed, A. Mondal, N.C. Saha, K. Dhara and P. Chattopadhyay, *Anal. Methods*, 2021, 13, 5651– 5659.
- 4. S. Qi, X. He, S. Zhang, P. Xu, M. Su, B. Dong and B. Song, Anal. Chim. Acta, 2023, 1238, 340657.
- 5. K. Anusuyadevi and S. Velmathi, Anal. Chim. Acta, 2023, 1239, 340678.
- M. Santhosh, S. R. Chinnadayyala, A. Kakoti and P. Goswami, *Biosens. Bioelectron.*, 2014, 59, 370– 376.
- M. Zhang, L. Xu, Q. Ma, H. Yu, H. Fang, Z. Lin, Q. Zhang and Z. Chen, ACS Appl. Mater. Interfaces, 2018, 10, 42155–42164.
- R.R. Anjana, J.S. Anjali Devi, M. Jayasree, R.S. Aparna, B. Aswathy, G.L. Praveen, G.M. Lekha and G. Sony, *Microchim. Acta*, 2018, 185, 1-11.
- 9. M. Jayasree, R.S. Aparna, R.R. Anjana, J.S. Anjali Devi, Nebu John, K. Abha, A. Manikandan and S. George, *Anal. Chim. Acta*, 2018, **1031**, 152-160.
- 10. K. Abha, J. Nebu, J.S. Anjali Devi, R.S. Aparna, R.R. Anjana, A.O. Aswathy and S. George, *Sens. Actuators B.*, 2019, **282**, 300–308.
- 11. N. Nandi, S. Gaurav, P. Sarkar, S. Kumar and K. Sahu, ACS Appl. Bio Mater., 2021, 4, 5201–5211.
- 12. S. K. Anand, M. R. Mathew and K. G. Kumar, J Photochem Photobiol, A., 2021, 418, 113379.
- 13. B. Wang, X. Q. Zhou, L. Li, Y. X. Li, L. P. Yu and Y. Chen, Sens. Actuators B., 2022, 369, 132392.
- 14. B. Barik and S. Mohapatra, Anal. Biochem., 2022, 654, 114813.