Electronic Supplementary Material (ESI) for Sensors & Diagnostics. This journal is © The Royal Society of Chemistry 2023

Development of multi-analyte responsive sensors: Optical discrimination of arsenite and arsenate ions, ratiometric detection of arsenite, and application in food and water samples

Nagaraj K^{a,b}, A. Nityananda Shetty^a, Darshak R. Trivedi^{b*}

a= Material Science Laboratory, Department of Chemistry, National Institute of Technology Karnataka (NITK) Surathkal, Srinivasnagar - 575 025, Karnataka, India

b=Supramolecular Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka (NITK) Surathkal, Srinivasnagar - 575 025, Karnataka, India

*Email: darshak_rtrivedi@yahoo.co.in, darshakrtrivedi@nitk.edu.in, Phone No: +91-824-2473205, fax: +91 824 2474033 (Darshak R Trivedi)

SUPPLEMENTARY INFORMATION

Table of contents

Materials and methods

Structural characterization of the receptors N4R1- N4R3

Synthesis of receptors (N4R1, N4R2 and N4R3)

Structural characterization of the receptors N4R1- N4R3

- Fig. S1 FT- IR spectrum of the receptor N4R1
- Fig. S2 ¹H- NMR spectrum of N4R1
- Fig. S3 ¹³C- NMR spectrum of receptor N4R1
- Fig. S4 LC- MS spectrum of receptor N4R1
- Fig. S5 FT- IR spectrum of receptor N4R2
- Fig. S6 ¹H- NMR spectrum of receptor N4R2
- Fig. S7 ¹³C- NMR spectrum of receptor N4R2
- Fig. S8 LC- MS spectrum of receptor N4R2

Fig. S9 FT- IR spectrum of the receptor N4R3

Fig. S10¹H- NMR spectrum of receptor N4R3

Fig. S11 ¹³C- NMR spectrum of receptor N4R3

Fig. S12 LC- MS spectrum of receptor N4R3

Fig. S13 UV- Vis absorption spectrum of receptor N4R1 in the presence of 2 equivalence of different anions in 30% aq. MeCN (MeCN- H_2O , 7:3, v/v)

Fig. S14 Change in color observed for receptor N4R1 (2×10^{-5} M, MeCN: H₂O, 7:3, v/v) with an addition of 2 equivalent NaF, NaCl, NaBr, NaI, NaAcO, NaNO₃, NaHSO₄, Na₃PO₄, NaH₂PO₄, NaAsO₂, Na₃AsO₄, SCN⁻, P₂O₇⁴⁻, S²⁻, and N₃⁻(1×10^{-2} M, H₂O)

Fig. S15 Change in color observed for receptor N4R1 (2×10^{-5} M, MeCN: H₂O, 7:3, v/v) with an addition of 2 equivalent metal ions as its nitrates Cu²⁺, Hg²⁺, Zn²⁺, Ni²⁺, Co²⁺, Fe³⁺, Pb²⁺, Cd²⁺, and Cr³⁺ (1×10^{-2} M, H₂O)

Fig. S16 Ratiometric color change of receptor N4R1 (2×10^{-5} M, 30% aq. MeCN) on addition of (i) 0.5 equivalent, (ii) 1 equivalent and (iii) 1.5 equivalent and (iv) 2 equivalent of NaAsO₂ (a) 1×10^{-3} M, (b) 1×10^{-4} M, (c) 1×10^{-5} M in H₂O

Fig. S17 UV- Vis spectral response of (a) N4R2 and N4R2+ $AsO_2^{-/} AsO_4^{3-/} PO_4^{3-}$ and (b) N4R3 and N4R3+ $AsO_2^{-/} AsO_4^{3-/} PO_4^{3-}$ in various percentage of water content in Me₂SO

Fig. S18 Color change of receptors $(2 \times 10^{-5} \text{ M}, 30\% \text{ aq. Me}_2\text{SO})$ (a) N4R1, (b) N4R2 and (c) N4R3 on adding 2 equivalence of Na salts of anions $(1 \times 10^{-2} \text{ M}, \text{ in water})$

Fig. S19 Color change of receptors $(2 \times 10^{-5} \text{ M}, 30\% \text{ aq. Me}_2\text{SO})$ (a) N4R1, (b) N4R2 and (c) N4R3 on adding 2 equivalence of metal ions $(1 \times 10^{-2} \text{ M}, \text{ in water})$

Fig. S20 The absorption variations of the receptor N4R1 (2×10^{-5} M in 30% aq. Me₂SO solution) with stepwise addition of NaAsO₂(1×10^{-2} M in H₂O). Inset plots represent absorption variation with anion addition

Fig. S21 The absorption variations of the receptor N4R1 (2×10^{-5} M in 30% aq. Me₂SO solution) with sequential addition of Na₃AsO₄ (1×10^{-2} M in H₂O). Inset plots represent absorption variation with anion addition

Fig. S22 The absorption variations of the receptor N4R1 (2×10^{-5} M in 30% aq. Me₂SO solution) with sequential addition of Na₃PO₄ (1×10^{-2} M in H₂O). Inset plots represent absorption variation with anion addition

Fig. S23 The absorption variations of the receptor N4R2 (2×10^{-5} M in 30% aq. Me₂SO solution) with sequential addition of NaAsO₂ (1×10^{-2} M in H₂O). Inset plots represent absorption variation with anion addition

Fig. S24 The absorption variations of the receptor N4R2 (2×10^{-5} M in 30% aq. Me₂SO solution) with sequential addition of Na₃AsO₄. Inset plots represent absorption variation with anion addition

Fig. S25 The absorption variations of the receptor N4R2 (2×10^{-5} M in 30% aq. Me₂SO solution) with sequential addition of Na₃PO₄ (1×10^{-2} M in H₂O). Inset plots represent absorption variation with anion addition

Fig. S26 The absorption variations of the receptor N4R3 (2×10^{-5} M in 30% aq. Me₂SO solution) with sequential addition of NaAsO₂ (1×10^{-2} M in H₂O). Inset plots represent absorption variation with anion addition

Fig. S27 The absorption variations of the receptor N4R3 (2×10^{-5} M in 30% aq. Me₂SO solution) with sequential addition of Na₃AsO₄ (1×10^{-2} M in H₂O). Inset plots represent absorption variation with anion addition

Fig. S28 The absorption variations of the receptor N4R3 (2×10^{-5} M in 30% aq. Me₂SO solution) with sequential addition of Na₃PO₄ (1×10^{-2} M in H₂O). Inset plots represent absorption variation with anion addition

Fig. S29 (a) The absorption variations of the receptor N4R2 (2×10^{-5} M in Me₂SO - H₂O, 1:1 v/v) with sequential addition NaAsO₂ (1×10^{-2} M in water) (b) Color change of N4R2 (2×10^{-5} M, 50% aq. Me₂SO) on adding 2 equiv. of anions. Inset plots represent absorption variations with arsenite addition

Fig. S30 (a) The absorption variations of the receptor N4R3 (2×10^{-5} M in Me₂SO - H₂O, 1:1 v/v) with sequential addition Na salts of arsenite (1×10^{-2} M in water). Inset plot represents absorption variation with arsenite addition (b) Color change of receptor N4R3 (2×10^{-5} M, 50% aq. Me₂SO) on adding 2 equivalence of Na salts of anions (1×10^{-2} M, in water)

Fig. S31 Effect of competing anions in the occurrence of 3 equiv. of different anions in the (a) 30% aq. Me₂SO solution $(2 \times 10^{-5} \text{ M})$ Black bar: N4R1 + AsO₂⁻ ion, Blue bar: N4R1 + AsO₂⁻⁺ competing anions, (b) 30% aq. Me₂SO solution $(2 \times 10^{-5} \text{ M})$ Black bar: N4R1 + AsO₄³⁻ ion, Sky blue bar: N4R1 + AsO₄³⁻ + competing anions, and (c) 30% aq. Me₂SO solution $(2 \times 10^{-5} \text{ M})$ Black bar: N4R1 + PO₄³⁻ ion, Red bar: N4R1 + PO₄³⁻ + competing anions

Fig. S32 Effect of competing anions in the occurrence of 3 equiv. of different anions in the (a) 30% aq. Me₂SO solution $(2 \times 10^{-5} \text{ M})$ Black bar: N4R2 + AsO₂⁻ ion, pink bar: N4R2 + AsO₂⁻⁺

competing anions, (b) 30% aq. Me₂SO solution (2×10^{-5} M) Black bar: N4R2 + AsO₄³⁻ ion, Green bar: N4R2 + AsO₄³⁻ + competing anions, and (c) 30% aq. Me₂SO solution (2×10^{-5} M) Black bar: N4R2 + PO₄³⁻ ion, Violet bar: N4R2 + PO₄³⁻ + competing anions

Fig. S33 Effect of competing anions in the occurrence of 3 equiv. of different anions in the (a) 30% aq. Me₂SO solution $(2 \times 10^{-5} \text{ M})$ Black bar: N4R3 + AsO₂⁻ ion, Green bar: N4R3 + AsO₂⁻⁺ competing anions, (b) 30% aq. Me₂SO solution $(2 \times 10^{-5} \text{ M})$ Black bar: N4R3 + AsO₄³⁻ ion, Purple bar: N4R3 + AsO₄³⁻ + competing anions, and (c) 30% aq. Me₂SO solution $(2 \times 10^{-5} \text{ M})$ Black bar: N4R3 + PO₄³⁻ ion, Cyan bar: N4R3 + PO₄³⁻ + competing anions

Fig. S34 Outcome of competing cations in the occurrence of 3 equiv. of different cations in the (a) 50% aq. Me₂SO solution $(2 \times 10^{-5} \text{ M})$ Black bar: N4R1 + AsO₂⁻ ion, Green bar: N4R1 + AsO₂⁻⁺ cations, and (b) 50% aq. Me₂SO solution $(2 \times 10^{-5} \text{ M})$ Black bar: N4R2 + AsO₂⁻ ion, Pink bar: N4R2 + AsO₂⁻⁺ cations

Fig. S35 Effect of competing anions in the presence of 3 equiv. of different cations in the 50% aq. Me₂SO solution (2×10^{-5} M) Black bar: N4R3 + AsO₂⁻ ion, blue bar: N4R3 + AsO₂⁻⁺ cations

Fig. S36 pH effect on the UV- Vis absorption spectra of N4R1 and N4R1+ AsO_4^{3-} in Me₂SO - H₂O (7: 3, v/v)

Fig. S37 pH effect on the UV- Vis absorption spectra of (a) N4R2 and N4R2+ AsO_2^- and (b) N4R2 and N4R2+ AsO_4^{3-} in Me₂SO - H₂O (7: 3, v/v)

Fig. S38 pH effect on the UV- Vis absorption spectra of N4R2 and N4R2+ PO_4^{3-} in Me₂SO - H₂O (7: 3, v/v)

Fig. S39 pH effect on the UV- Vis absorption spectra of (a) N4R3 and N4R3+ AsO_2^- and (b) N4R3 and N4R3+ AsO_4^{3-} in Me₂SO - H₂O (7: 3, v/v)

Fig. S40 pH effect on the UV- Vis absorption spectra of N4R3 and N4R3+ PO_4^{3-} in Me₂SO - H₂O (7: 3, v/v)

Fig. S41 Rariometric color change of 30% aq. Me₂SO receptor N4R1 on 0.5- 2.0 equiv. of NaAsO₂ addition and (b) Ratiometric plot of A_{618}/A_{440} for N4R1 with the increasing concentration of arsenite ion

Fig. S42 Ratiometric color change of 30% aq. Me₂SO receptor N4R2 on 0.5- 2.0 equivalents of sodium arsenite addition and (b) Ratiometric plot of A_{675}/A_{448} for receptor N4R2 with the increasing concentration of AsO₂⁻ ion

Fig. S43 Ratiometric color change of 30% aq. Me₂SO receptor N4R3 on 0.5- 2.0 equivalents of sodium arsenite addition and (b) Ratiometric plot of A_{668}/A_{446} for receptor N4R3 with the increasing concentration of AsO₂⁻ ion

Fig. S44 (a) B-H plot for N4R1—AsO₂⁻ complex in MeCN - H₂O (7:3, v/v) and (b) B-H plot for N4R1- AsO₄³⁻ complex in MeCN - H₂O (7: 3 v/v)

Fig. S45 (a) B-H plot for N4R1—AsO₂⁻ complex in Me₂SO - H₂O (7:3, v/v) and (b) B-H plot for N4R1- AsO₄³⁻ complex in Me₂SO - H₂O (7: 3 v/v)

Fig. S46 (a) B-H plot for N4R2—AsO₂⁻ complex in Me₂SO - H₂O (7:3, v/v) and (b) B-H plot for N4R2- AsO₄³⁻ complex in Me₂SO - H₂O (7: 3 v/v)

Fig. S47 (a) B-H plot for N4R3—AsO₂⁻ complex in Me₂SO - H₂O (7:3, v/v) and (b) B-H plot for N4R3- AsO₄³⁻ complex in Me₂SO - H₂O (7: 3 v/v)

Fig. S48 (a) B-H plot for N4R2—AsO₂⁻ complex in Me₂SO - H₂O (1:1, v/v) and (b) B-H plot for N4R3- AsO₂⁻ complex in Me₂SO - H₂O (1: 1 v/v)

Fig. S49 B-H plot for N4R1—PO₄^{3⁻} complex in (a) MeCN- H₂O (7: 3, v/v) and (b) Me₂SO - H₂O (7: 3, v/v)

Fig. S50 (a) B-H plot for N4R2—PO₄³⁻ complex in Me₂SO - H₂O (7: 3, v/v) and (b) B-H plot for N4R3- PO₄³⁻ complex in Me₂SO - H₂O (7: 3, v/v)

Fig. S51 (a) Calibration curve for N4R1—AsO₂⁻ complex in MeCN - H₂O (7: 3, v/v) and (b) calibration curve for N4R1- AsO₄³⁻ complex in MeCN - H₂O (7: 3, v/v)

Fig. S52 (a) Calibration curve for N4R1—AsO₂⁻ complex in Me₂SO- H₂O (7: 3, v/v) and (b) calibration curve for N4R1- AsO₄³⁻ complex in Me₂SO - H₂O (7: 3, v/v)

Fig. S53 (a) Calibration curve for N4R2—AsO₂⁻ complex in Me₂SO - H₂O (7: 3, v/v) and (b) calibration curve for N4R2- AsO₄³⁻ complex in Me₂SO - H₂O (7: 3, v/v)

Fig. S54 (a) Calibration curve for N4R3—AsO₂⁻ complex in Me₂SO - H₂O (7: 3, v/v) and (b) calibration curve for N4R3- AsO₄³⁻ complex in Me₂SO - H₂O (7: 3, v/v)

Fig. S55 (a) Calibration curve for N4R2—AsO₂⁻ complex in Me₂SO - H₂O (1: 1, v/v) and (b) calibration curve for N4R3- AsO₂⁻ complex in Me₂SO - H₂O (1: 1, v/v)

Fig. S56 Calibration curve for N4R1—PO₄^{3–} complex in (a) MeCN- H₂O (7: 3, v/v) and (b) Me₂SO - H₂O (7: 3, v/v)

Fig. S57 (a) Calibration curve for N4R2—PO₄^{3–} complex in Me₂SO - H₂O (7: 3, v/v) and (b) calibration curve for N4R3- PO₄^{3–} complex in Me₂SO - H₂O (7: 3, v/v)

Fig. S58 CV diagram of (a) N4R2 and (b) N4R3 with the sequential addition of AsO_2^-

Fig. S59 CV diagram of (a) N4R2 and (b) N4R3 with the sequential addition of PO_4^{3-}

Fig. S60 CV diagram of (a) N4R1 and (b) N4R2 with the sequential addition of AsO_4^{3-}

Fig. S61 CV diagram of receptor N4R3 with the serial addition of AsO_4^{3-} ion

Fig. S62 ¹H NMR titration of receptor N4R2 in a Me₂SO $-d_6$ solvent with incremental addition of (0-1 equiv.) of NaAsO₂ (1× 10⁻² M in H₂O)

Fig. S63 ¹H NMR titration of receptor N4R3 in a Me₂SO $-d_6$ solvent with incremental addition of (0-1 equiv.) of NaAsO₂ (1× 10⁻² M in H₂O)

Fig. S64 Blank ¹H NMR titration of receptor N4R1 in a Me₂SO $-d_6$ solvent with incremental addition of H₂O

Fig. S65 Blank ¹H NMR titration of receptor N4R2 in a Me₂SO $-d_6$ solvent with incremental addition of H₂O

Fig. S66 LC- MS spectrum of N4R1- AsO₂⁻ complex in negative mode

Fig. S67 LC- MS spectrum of N4R1- AsO₄³⁻ complex in negative mode

Fig. S68 LC- MS spectrum of N4R2- AsO₂⁻ complex in negative mode

Fig. S69 LC- MS spectrum of N4R2- AsO₄³⁻ complex in negative mode

Fig. S70 HOMO's and LUMO's diagrams for receptor N4R3 and receptor N4R3-AsO₂⁻ obtained by B3LYP/def- TZVPP method

Fig. S71 HOMO's and LUMO's diagrams for receptor N4R1 and receptor N4R1-AsO₂⁻ obtained by B3LYP/def- TZVPP method

Fig. S72 UV-visible absorption spectra of receptor N4R1 and complexation with AsO_2^- ion calculated by using TD-DFT calculation in solvent phase

Fig. S73 Reversible cycles and reproducible colorimetric switch of receptor $(2 \times 10^{-5} \text{ M}, 30\%$ aq. Me₂SO) (a) N4R1 reversed and reproduced by the addition of AsO₄³⁻ and 40 µL Ca²⁺, (b) N4R1 reversed and reproduced by the addition of PO₄³⁻ and 40 µL Ca²⁺, (c) N4R2 reversed and reproduced by the addition of AsO₄³⁻ and 20 µL Ca²⁺, (d) N4R2 reversed and reproduced by the addition of PO₄³⁻ and 20 µL Ca²⁺, (d) N4R2 reversed and reproduced by the addition of AsO₄³⁻ and 20 µL Ca²⁺, (e) N4R3 reversed and reproduced by the addition of AsO₄³⁻ and 20 µL Ca²⁺, and (f) N4R3 reversed and reproduced by the addition of PO₄³⁻ and 20 µL Ca²⁺.

Fig. S74 UV- Vis absorption of receptor $(2 \times 10^{-5} \text{ M}, 30\% \text{ aq. Me}_2\text{SO})$ (a) N4R1 circulated with addition of 40 µL Ca²⁺ and AsO₄³⁻ by turns, (b) N4R1 circulated with addition of 40 µL Ca²⁺ and PO₄³⁻ by turns, (c) N4R2 circulated with addition of 20 µL Ca²⁺ and AsO₄³⁻ by turns, (d) N4R2 circulated with addition of 20 µL Ca²⁺ and PO₄³⁻ by turns, (e) N4R3 circulated with addition of 20 µL Ca²⁺ and AsO₄³⁻ by turns, (c) N4R2 circulated with addition of 20 µL Ca²⁺ and PO₄³⁻ by turns, (e) N4R3 circulated with addition of 20 µL Ca²⁺ and PO₄³⁻ by turns, (e) N4R3 circulated with addition of 20 µL Ca²⁺ and PO₄³⁻ by turns, (f) N4R1 circulated with addition of 20 µL Ca²⁺ and PO₄³⁻ by turns, (f) N4R1 circulated with addition of 20 µL Ca²⁺ and PO₄³⁻ by turns, (f) N4R1 circulated with addition of 20 µL Ca²⁺ and PO₄³⁻ by turns

Fig. S75 (a) Addition of (i) 50 μ L, (ii) 100 μ L, (iii) 150 μ L, (iv) 200 μ L and (v) 300 μ L Cu²⁺ solution to N4R1 containing 2 equiv. AsO₂⁻, (b) Addition of (i) 20 μ L, (ii) 40 μ L, (iii) 60 μ L, (iv) 80 μ L, (v) 100 μ L, (vi) 120 μ L and (vii) 140 μ L Cu²⁺ solution to N4R2 containing 2 equiv. AsO₂⁻, and (c) Addition of (i) 20 μ L, (ii) 40 μ L, (iii) 60 μ L, (iv) 80 μ L, (v) 100 μ L, and (vi) 120 μ L and (vi) 140 μ L Cu²⁺ solution to N4R2 containing 2 equiv. AsO₂⁻, and (c) Addition of (i) 20 μ L, (ii) 40 μ L, (iii) 60 μ L, (iv) 80 μ L, (v) 100 μ L, and (vi) 120 μ L Cu²⁺ solution to N4R3 containing 2 equiv. AsO₂⁻

Fig. S76 UV- Vis absorption intensity changes on stepwise addition of Cu^{2+} solution to (a) N4R1 containing 2 equivalence of AsO_2^- , (b) N4R3 containing 2 equivalence of AsO_2^- , and (c) N4R3 containing 2 equivalence of AsO_2^-

Fig. S77 Observed color changes on adding 2 equivalences of PO_4^{3-} ions on test strips with (a) N4R1 in 30% aq. Me₂SO, (b) N4R2 in 30% aq. Me₂SO and (c) N4R3 in 30% aq. Me₂SO

Fig. S78 A linear calibration plot of (a) $N4R1-AsO_2^-$ vs. the amount of AsO_2^- ions and (b) $N4R2-AsO_2^-$ vs. the amount of AsO_2^- ions for the quantitative analysis of food and water samples

Fig. S79 A linear calibration plot of N4R3–AsO₂⁻ vs. the amount of AsO_2^- ions for the quantitative analysis of food and water samples

Fig. S80 A linear calibration plot of (a) N4R1–PO₄^{3–} vs. the amount of PO₄^{3–} ions and (b) N4R2– PO₄^{3–} vs. the amount of PO₄^{3–} ions for the quantitative analysis of food and water samples

Fig. S81 A linear calibration plot of N4R3 $-PO_4^{3-}$ vs. the amount of PO_4^{3-} ions for the quantitative analysis of food and water samples

Table S1 Absorption maximum difference ($\Delta\lambda_{max}$) of N4R1-N4R3 (2 ×10⁻⁵ M) in the presence of AsO₂⁻, AsO₄³⁻, PO₄³⁻ ions (2 equiv.)

Table S2 Binding ratio, binding constant, and detection limit of receptors N4R2 and N4R3 in the presence of arsenite, arsenate and phosphate ions

Table S3 Oscillator strength of Receptor- arsenite complexes

Table S4 λ_{max} of N4R1- N4R3 and complexes calculated from the theoretical DFT method and experimental UV- Vis spectroscopy

Table S5 Determination of AsO₂⁻ spiked into different food and water samples using N4R2 and N4R3

Table S6 Determination of PO_4^{3-} spiked into different food and water samples using N4R2 and N4R3

Table S7: Determination of arsenite spiked into different food and water samples with one equivalent of various anions spiked (F^+ AcO⁺ + $H_2PO_4^-$ + NO_3^-)

Table S8: Determination of phosphate spiked into different food and water samples with one equivalent of various anions spiked (F^+ AcO⁺ + $H_2PO_4^-$ + NO_3^-)

Materials and methods

The chemicals, anions, and solvents used in the study were procured from Sigma- Aldrich and TCI and used without further purification. ¹H- NMR and ¹³C- NMR spectra of the synthesized receptors were recorded using JASCO (400 MHz) NMR spectrometer. Infrared spectra were noted on Bruker- alpha FT- IR spectrometer with a resolution of 4 cm⁻¹. UV- Vis spectral studies were performed using Analytikjena Specord S600 spectrometer in a 3.5 mL glass cuvette with a path length of 1 cm. The cyclic voltammograms were recorded on an Ivium electrochemical workstation with a scan rate of 20 mV/s, and a potential range of -1.5 to +1.5 V. Mass spectra of the receptors were recorded using Xevo QToF, Waters mass spectrometer. The melting point of the synthesized products was recorded using Stuart- SMP3 melting point apparatus. pKa values were calculated using ChemAxon's Chemicalize software.

Colorimetric detection of anions: A fixed concentration $(2 \times 10^{-5} \text{ M})$ of receptor in MeCN/ Me₂SO and anions in water $(1 \times 10^{-2} \text{ M})$ have been used for the colorimetric detection of anions.

2 equivalence of each anion is added to the receptor and the color changes have been noted. The detection has been verified by shift in the UV- Vis spectroscopy.

UV- Vis titration: Anions of 1×10^{-2} M in water have been sequentially added to the receptors of 2×10^{-5} M concentration in MeCN/ Me₂SO. UV- Vis spectra has been monitored in the each addition.

pH of the solutions was maintained 7-7.2 and distilled water were used.

Synthesis of receptors (N4R1, N4R2 and N4R3)

An equimolar quantity of 5- nitro-2-furaldehyde and substituted phenyl hydrazine (2,4dinitrophenylhydrazine, 4-cyanophenylhydrazine and 2,4- dichlorophenylhydrazine) were dissolved in 20 mL of ethanol, and a catalytic quantity of glacial acetic acid was added into it. The reaction mixture was refluxed for 3 hours, followed by checking the completion of the reaction using TLC plates.

Structural characterization of the receptors N4R1- N4R3

(E)-1-(2,4-dinitrophenyl)-2-((5-nitrofuran-2-yl)methylene)hydrazine (N4R1): Yield: 83%, Melting point: 271.5°C, FT IR (KBr) (cm⁻¹): 3258.51 (N-H), 1507.03 (NO₂), 1609.13 (CH=N). ¹H NMR (DMSO-d₆, 400 MHz, Me₄Si): 11.91 (s, 1H), 8.82-8.80 (d, 1H), 8.65 (s, 1H), 8.44-8.41 (dd, 1H), 7.99- 7.97 (d, 1H), 7.80- 7.78 (d, 1H), 7.31- 7.30 (d,1H). ¹³C NMR (DMSO-d₆, 400MHz): 152.61, 151.94, 144.31, 138.73, 136.85, 131.15, 130.54, 123.31, 117.53, 116.17, 115.35. Mass (LC-MS): m/z calculated for $C_{11}H_7N_5O_7$: 321.03 Obtained: 320.02 [M-H]⁺.

(E)-4-(2-((5-nitrofuran-2-yl)methylene)hydrazinyl)benzonitrile (N4R2): Yield: 81%, Melting point: 221.4°C, FT IR (KBr) (cm⁻¹): 3309.84 (N-H), 1470.82 (NO₂), 1602.79 (CH=N), 2209.26 (-CN). ¹H NMR (DMSO-d₆, 400 MHz, Me₄Si): 11.51 (s,1H), 7.87 (s, 1H), 7.76- 7.75(d, 1H), 7.68- 7.65(dd, 2H), 7.19- 7.16 (dd, 2H), 7.11-7.10 (d, 1H). ¹³C NMR (DMSO-d₆, 400MHz): 153.74, 151.88, 147.97, 134.38, 128.18, 120.26, 116.01, 113.50, 113.16, 101.82. Mass (LC-MS): m/z calculated for $C_{12}H_8N_4O_3$: 256.22 Obtained: 255.05 [M-H]⁺.

(E)-1-(2,4-dichlorophenyl)-2-((5-nitrofuran-2-yl)methylene)hydrazine (N4R3): Yield: 82%, Melting point: 223.8°C, FT IR (KBr) (cm⁻¹): 3298.05 (N-H), 1464.98 (NO₂), 1570.07 (CH=N). ¹H NMR (DMSO-d₆, 400 MHz, Me₄Si): 10.75 (s, 1H), 8.22 (s, 1H), 7.76- 7.75 (d, 1H), 7.51- 7.49 (m, 2H), 7.36- 7.33 (dd, 1H), 7.10- 7.09 (d, 1H). ¹³C NMR (DMSO-d₆, 400MHz): 154.00, 151.82, 140.02, 129.39, 128.95, 128.86, 124.55, 118.07, 116.24, 116.03, 112.72. Mass (LC-MS): m/z calculated for $C_{11}H_7Cl_2N_3O_3$: 298.99 Obtained: 298.03 [M-H]⁺.

Fig. S1 FT- IR spectrum of the receptor N4R1

Fig. S2 ¹H- NMR spectrum of N4R1

Fig. S3 ¹³C- NMR spectrum of receptor N4R1

g. S4 LC- MS spectrum of receptor N4R1

Fig. S5 FT- IR spectrum of receptor N4R2

Fig. S6 ¹H- NMR spectrum of receptor N4R2

Fig. S7 ¹³C- NMR spectrum of receptor N4R2

Fig. S8 LC- MS spectrum of receptor N4R2

Fig. S9 FT- IR spectrum of the receptor N4R3

Fig. S10 ¹H- NMR spectrum of receptor N4R3

Fig. S11 ¹³C- NMR spectrum of receptor N4R3

Fig. S12 LC- MS spectrum of receptor N4R3

Fig. S13 UV- Vis absorption spectrum of receptor N4R1 in the presence of 2 equivalence of different anions in 30% aq. MeCN (MeCN- H_2O , 7:3, v/v)

Fig. S14 Change in color observed for receptor N4R1 (2×10^{-5} M, MeCN: H₂O, 7:3, v/v) with an addition of 2 equivalent NaF, NaCl, NaBr, NaI, NaAcO, NaNO₃, NaHSO₄, Na₃PO₄, NaH₂PO₄, NaAsO₂, Na₃AsO₄, SCN⁻, P₂O₇⁴⁻, S²⁻, and N₃⁻(1×10^{-2} M, H₂O)

Fig. S15 Change in color observed for receptor N4R1 (2×10^{-5} M, MeCN: H₂O, 7:3, v/v) with an addition of 2 equivalent metal ions as its nitrates Cu²⁺, Hg²⁺, Zn²⁺, Ni²⁺, Co²⁺, Fe³⁺, Pb²⁺, Cd²⁺, and Cr³⁺ (1×10^{-2} M, H₂O)

Fig. S16 Ratiometric color change of receptor N4R1 (2×10^{-5} M, 30% aq. MeCN) on addition of (i) 0.5 equivalent, (ii) 1 equivalent and (iii) 1.5 equivalent and (iv) 2 equivalent of NaAsO₂ (a) 1×10^{-3} M, (b) 1×10^{-4} M, (c) 1×10^{-5} M in H₂O

Fig. S17 UV- Vis spectral response of (a) N4R2 and N4R2+ $AsO_2^{-/}AsO_4^{3-/}PO_4^{3-}$ and (b) N4R3 and N4R3+ $AsO_2^{-/}AsO_4^{3-/}PO_4^{3-}$ in various percentage of water content in Me₂SO

Fig. S18 Color change of receptors $(2 \times 10^{-5} \text{ M}, 30\% \text{ aq. Me}_2\text{SO})$ (a) N4R1, (b) N4R2 and (c) N4R3 on adding 2 equivalence of Na salts of anions $(1 \times 10^{-2} \text{ M}, \text{ in water})$

Fig. S19 Color change of receptors $(2 \times 10^{-5} \text{ M}, 30\% \text{ aq. Me}_2\text{SO})$ (a) N4R1, (b) N4R2 and (c) N4R3 on adding 2 equivalence of metal ions $(1 \times 10^{-2} \text{ M}, \text{ in water})$

Fig. S20 The absorption variations of the receptor N4R1 (2×10^{-5} M in 30% aq. Me₂SO solution) with stepwise addition of NaAsO₂(1×10^{-2} M in H₂O). Inset plots represent absorption variation with anion addition

Fig. S21 The absorption variations of the receptor N4R1 (2×10^{-5} M in 30% aq. Me₂SO solution) with sequential addition of Na₃AsO₄ (1×10^{-2} M in H₂O). Inset plots represent absorption variation with anion addition

Fig. S22 The absorption variations of the receptor N4R1 (2×10^{-5} M in 30% aq. Me₂SO solution) with sequential addition of Na₃PO₄ (1×10^{-2} M in H₂O). Inset plots represent absorption variation with anion addition

Fig. S23 The absorption variations of the receptor N4R2 (2×10^{-5} M in 30% aq. Me₂SO solution) with sequential addition of NaAsO₂ (1×10^{-2} M in H₂O). Inset plots represent absorption variation with anion addition

Fig. S24 The absorption variations of the receptor N4R2 (2×10^{-5} M in 30% aq. Me₂SO solution) with sequential addition of Na₃AsO₄. Inset plots represent absorption variation with anion addition

Fig. S25 The absorption variations of the receptor N4R2 (2×10^{-5} M in 30% aq. Me₂SO solution) with sequential addition of Na₃PO₄ (1×10^{-2} M in H₂O). Inset plots represent absorption variation with anion addition

Fig. S26 The absorption variations of the receptor N4R3 (2×10^{-5} M in 30% aq. Me₂SO solution) with sequential addition of NaAsO₂ (1×10^{-2} M in H₂O). Inset plots represent absorption variation with anion addition

Fig. S27 The absorption variations of the receptor N4R3 (2×10^{-5} M in 30% aq. Me₂SO solution) with sequential addition of Na₃AsO₄ (1×10^{-2} M in H₂O). Inset plots represent absorption variation with anion addition

Fig. S28 The absorption variations of the receptor N4R3 (2×10^{-5} M in 30% aq. Me₂SO solution) with sequential addition of Na₃PO₄ (1×10^{-2} M in H₂O). Inset plots represent absorption variation with anion addition

Fig. S29 (a) The absorption variations of the receptor N4R2 (2×10^{-5} M in Me₂SO - H₂O, 1:1 v/v) with sequential addition NaAsO₂ (1×10^{-2} M in water) (b) Color change of N4R2 (2×10^{-5} M, 50% aq. Me₂SO) on adding 2 equiv. of anions. Inset plots represent absorption variations with arsenite addition

Fig. S30 (a) The absorption variations of the receptor N4R3 (2×10^{-5} M in Me₂SO - H₂O, 1:1 v/v) with sequential addition Na salts of arsenite (1×10^{-2} M in water). Inset plot represents absorption variation with arsenite addition (b) Color change of receptor N4R3 (2×10^{-5} M, 50% aq. Me₂SO) on adding 2 equivalence of Na salts of anions (1×10^{-2} M, in water)

Fig. S31 Effect of competing anions in the occurrence of 3 equiv. of different anions in the (a) 30% aq. Me₂SO solution $(2 \times 10^{-5} \text{ M})$ Black bar: N4R1 + AsO₂⁻ ion, Blue bar: N4R1 + AsO₂⁻⁺ competing anions, (b) 30% aq. Me₂SO solution $(2 \times 10^{-5} \text{ M})$ Black bar: N4R1 + AsO₄³⁻ ion, Sky blue bar: N4R1 + AsO₄³⁻ + competing anions, and (c) 30% aq. Me₂SO solution $(2 \times 10^{-5} \text{ M})$ Black bar: N4R1 + PO₄³⁻ ion, Red bar: N4R1 + PO₄³⁻ + competing anions

Fig. S32 Effect of competing anions in the occurrence of 3 equiv. of different anions in the (a) 30% aq. Me₂SO solution $(2 \times 10^{-5} \text{ M})$ Black bar: N4R2 + AsO₂⁻ ion, pink bar: N4R2 + AsO₂⁻⁺ competing anions, (b) 30% aq. Me₂SO solution $(2 \times 10^{-5} \text{ M})$ Black bar: N4R2 + AsO₄³⁻ ion, Green bar: N4R2 + AsO₄³⁻ + competing anions, and (c) 30% aq. Me₂SO solution $(2 \times 10^{-5} \text{ M})$ Black bar: N4R2 + PO₄³⁻ ion, Violet bar: N4R2 + PO₄³⁻ + competing anions

Fig. S33 Effect of competing anions in the occurrence of 3 equiv. of different anions in the (a) 30% aq. Me₂SO solution $(2 \times 10^{-5} \text{ M})$ Black bar: N4R3 + AsO₂⁻ ion, Green bar: N4R3 + AsO₂⁻⁺ competing anions, (b) 30% aq. Me₂SO solution $(2 \times 10^{-5} \text{ M})$ Black bar: N4R3 + AsO₄³⁻ ion, Purple bar: N4R3 + AsO₄³⁻ + competing anions, and (c) 30% aq. Me₂SO solution $(2 \times 10^{-5} \text{ M})$ Black bar: N4R3 + PO₄³⁻ ion, Cyan bar: N4R3 + PO₄³⁻ + competing anions

Fig. S34 Outcome of competing cations in the occurrence of 3 equiv. of different cations in the (a) 50% aq. Me₂SO solution $(2 \times 10^{-5} \text{ M})$ Black bar: N4R1 + AsO₂⁻ ion, Green bar: N4R1 + AsO₂⁻⁺ cations, and (b) 50% aq. Me₂SO solution $(2 \times 10^{-5} \text{ M})$ Black bar: N4R2 + AsO₂⁻ ion, Pink bar: N4R2 + AsO₂⁻⁺ cations

Fig. S35 Effect of competing anions in the presence of 3 equiv. of different cations in the 50% aq. Me₂SO solution $(2 \times 10^{-5} \text{ M})$ Black bar: N4R3 + AsO₂⁻ ion, blue bar: N4R3 + AsO₂⁻⁺ cations

Fig. S36 pH effect on the UV- Vis absorption spectra of N4R1 and N4R1+ AsO_4^{3-} in Me₂SO - H₂O (7: 3, v/v)

Fig. S37 pH effect on the UV- Vis absorption spectra of (a) N4R2 and N4R2+ AsO_2^- and (b) N4R2 and N4R2+ AsO_4^{3-} in Me₂SO - H₂O (7: 3, v/v)

Fig. S38 pH effect on the UV- Vis absorption spectra of N4R2 and N4R2+ PO_4^{3-} in Me₂SO - H₂O (7: 3, v/v)

Fig. S39 pH effect on the UV- Vis absorption spectra of (a) N4R3 and N4R3+ AsO_2^- and (b) N4R3 and N4R3+ AsO_4^{3-} in Me₂SO - H₂O (7: 3, v/v)

Fig. S40 pH effect on the UV- Vis absorption spectra of N4R3 and N4R3+ PO_4^{3-} in Me₂SO - H₂O (7: 3, v/v)

Fig. S41 Rariometric color change of 30% aq. Me₂SO receptor N4R1 on 0.5- 2.0 equiv. of NaAsO₂ addition and (b) Ratiometric plot of A_{618}/A_{440} for N4R1 with the increasing concentration of arsenite ion

Fig. S42 Ratiometric color change of 30% aq. Me₂SO receptor N4R2 on 0.5- 2.0 equivalents of sodium arsenite addition and (b) Ratiometric plot of A_{675}/A_{448} for receptor N4R2 with the increasing concentration of AsO₂⁻ ion

Fig. S43 Ratiometric color change of 30% aq. Me₂SO receptor N4R3 on 0.5- 2.0 equivalents of sodium arsenite addition and (b) Ratiometric plot of A_{668}/A_{446} for receptor N4R3 with the increasing concentration of AsO₂⁻ ion

Fig. S44 (a) B-H plot for N4R1—AsO₂⁻ complex in MeCN - H₂O (7:3, v/v) and (b) B-H plot for N4R1- AsO₄³⁻ complex in MeCN - H₂O (7: 3 v/v)

Fig. S45 (a) B-H plot for N4R1—AsO₂⁻ complex in Me₂SO - H₂O (7:3, v/v) and (b) B-H plot for N4R1- AsO₄³⁻ complex in Me₂SO - H₂O (7: 3 v/v)

Fig. S46 (a) B-H plot for N4R2—AsO₂⁻ complex in Me₂SO - H₂O (7:3, v/v) and (b) B-H plot for N4R2- AsO₄³⁻ complex in Me₂SO - H₂O (7: 3 v/v)

Fig. S47 (a) B-H plot for N4R3—AsO₂⁻ complex in Me₂SO - H₂O (7:3, v/v) and (b) B-H plot for N4R3- AsO₄³⁻ complex in Me₂SO - H₂O (7: 3 v/v)

Fig. S48 (a) B-H plot for N4R2—AsO₂⁻ complex in Me₂SO - H₂O (1:1, v/v) and (b) B-H plot for N4R3- AsO₂⁻ complex in Me₂SO - H₂O (1: 1 v/v)

Fig. S49 B-H plot for N4R1—PO₄³⁻ complex in (a) MeCN- H₂O (7: 3, v/v) and (b) Me₂SO - H₂O (7: 3, v/v)

Fig. S50 (a) B-H plot for N4R2—PO₄³⁻ complex in Me₂SO - H₂O (7: 3, v/v) and (b) B-H plot for N4R3- PO₄³⁻ complex in Me₂SO - H₂O (7: 3, v/v)

Fig. S51 (a) Calibration curve for N4R1—AsO₂⁻ complex in MeCN - H₂O (7: 3, v/v) and (b) calibration curve for N4R1- AsO₄³⁻ complex in MeCN - H₂O (7: 3, v/v)

Fig. S52 (a) Calibration curve for N4R1—AsO₂⁻ complex in Me₂SO- H₂O (7: 3, v/v) and (b) calibration curve for N4R1- AsO₄³⁻ complex in Me₂SO - H₂O (7: 3, v/v)

Fig. S53 (a) Calibration curve for N4R2—AsO₂⁻ complex in Me₂SO - H₂O (7: 3, v/v) and (b) calibration curve for N4R2- AsO₄³⁻ complex in Me₂SO - H₂O (7: 3, v/v)

Fig. S54 (a) Calibration curve for N4R3—AsO₂⁻ complex in Me₂SO - H₂O (7: 3, v/v) and (b) calibration curve for N4R3- AsO₄³⁻ complex in Me₂SO - H₂O (7: 3, v/v)

Fig. S55 (a) Calibration curve for N4R2—AsO₂⁻ complex in Me₂SO - H₂O (1: 1, v/v) and (b) calibration curve for N4R3- AsO₂⁻ complex in Me₂SO - H₂O (1: 1, v/v)

Fig. S56 Calibration curve for N4R1—PO₄^{3–} complex in (a) MeCN- H₂O (7: 3, v/v) and (b) Me₂SO - H₂O (7: 3, v/v)

Fig. S57 (a) Calibration curve for N4R2—PO₄^{3–} complex in Me₂SO - H₂O (7: 3, v/v) and (b) calibration curve for N4R3- PO₄^{3–} complex in Me₂SO - H₂O (7: 3, v/v)

Fig. S58 CV diagram of (a) N4R2 and (b) N4R3 with the sequential addition of AsO_2^-

Fig. S59 CV diagram of (a) N4R2 and (b) N4R3 with the sequential addition of PO_4^{3-}

Fig. S60 CV diagram of (a) N4R1 and (b) N4R2 with the sequential addition of AsO_4^{3-}

Fig. S61 CV diagram of receptor N4R3 with the serial addition of AsO_4^{3-} ion

Fig. S62 ¹H NMR titration of receptor N4R2 in a Me₂SO $-d_6$ solvent with incremental addition of (0-1 equiv.) of NaAsO₂ (1× 10⁻² M in H₂O)

Fig. S63 ¹H NMR titration of receptor N4R3 in a Me₂SO $-d_6$ solvent with incremental addition of (0-1 equiv.) of NaAsO₂ (1× 10⁻² M in H₂O)

Fig. S64 Blank ¹H NMR titration of receptor N4R1 in a Me₂SO $-d_6$ solvent with incremental addition of H₂O

Fig. S65 Blank ¹H NMR titration of receptor N4R2 in a Me₂SO $-d_6$ solvent with incremental addition of H₂O

Fig. S66 LC- MS spectrum of N4R1- AsO₂⁻ complex in negative mode

Fig. S67 LC- MS spectrum of N4R1- AsO₄³⁻ complex in negative mode

Fig. S68 LC- MS spectrum of N4R2- AsO₂⁻ complex in negative mode

Fig. S69 LC- MS spectrum of N4R2- AsO₄³⁻ complex in negative mode

 $N4R3 + AsO_2^{-}$

Fig. S70 HOMO's and LUMO's diagrams for receptor N4R3 and receptor N4R3-AsO₂⁻ obtained by B3LYP/def- TZVPP method

Fig. S71 HOMO's and LUMO's diagrams for receptor N4R1 and receptor N4R1-AsO₂⁻ obtained by B3LYP/def- TZVPP method

Fig. S72 UV-visible absorption spectra of receptor N4R1 and complexation with AsO_2^- ion calculated by using TD-DFT calculation in solvent phase

Fig. S73 Reversible cycles and reproducible colorimetric switch of receptor (2×10^{-5} M, 30% aq. Me₂SO) (a) N4R1 reversed and reproduced by the addition of AsO₄³⁻ and 40 µL Ca²⁺, (b) N4R1 reversed and reproduced by the addition of PO₄³⁻ and 40 µL Ca²⁺, (c) N4R2 reversed and reproduced by the addition of AsO₄³⁻ and 20 µL Ca²⁺, (d) N4R2 reversed and reproduced by the addition of PO₄³⁻ and 20 µL Ca²⁺, (e) N4R3 reversed and reproduced by the addition of AsO₄³⁻ and 20 µL Ca²⁺, (e) N4R3 reversed and reproduced by the addition of PO₄³⁻ and 20 µL Ca²⁺, and (f) N4R3 reversed and reproduced by the addition of PO₄³⁻ and 20 µL Ca²⁺.

Fig. S74 UV- Vis absorption of receptor (2×10^{-5} M, 30% aq. Me₂SO) (a) N4R1 circulated with addition of 40 µL Ca²⁺ and AsO₄³⁻ by turns, (b) N4R1 circulated with addition of 40 µL Ca²⁺ and PO₄³⁻ by turns, (c) N4R2 circulated with addition of 20 µL Ca²⁺ and AsO₄³⁻ by turns, (d) N4R2 circulated with addition of 20 µL Ca²⁺ and PO₄³⁻ by turns, (e) N4R3 circulated with addition of 20 µL Ca²⁺ and AsO₄³⁻ by turns, addition of 20 µL Ca²⁺ and PO₄³⁻ by turns, (e) N4R3 circulated with addition of 20 µL Ca²⁺ and PO₄³⁻ by turns, (f) N4R1 circulated with addition of 20 µL Ca²⁺ and PO₄³⁻ by turns, (f) N4R1 circulated with addition of 20 µL Ca²⁺ and PO₄³⁻ by turns, (f) N4R1 circulated with addition of 20 µL Ca²⁺ and PO₄³⁻ by turns, (f) N4R1 circulated with addition of 20 µL Ca²⁺ and PO₄³⁻ by turns, (f) N4R1 circulated with addition of 20 µL Ca²⁺ and PO₄³⁻ by turns, (f) N4R1 circulated with addition of 20 µL Ca²⁺ and PO₄³⁻ by turns, (f) N4R1 circulated with addition of 20 µL Ca²⁺ and PO₄³⁻ by turns

Fig. S75 (a) Addition of (i) 50 μ L, (ii) 100 μ L, (iii) 150 μ L, (iv) 200 μ L and (v) 300 μ L Cu²⁺ solution to N4R1 containing 2 equiv. AsO₂⁻, (b) Addition of (i) 20 μ L, (ii) 40 μ L, (iii) 60 μ L, (iv) 80 μ L, (v) 100 μ L, (vi) 120 μ L and (vii) 140 μ L Cu²⁺ solution to N4R2 containing 2 equiv. AsO₂⁻, and (c) Addition of (i) 20 μ L, (ii) 40 μ L, (iii) 60 μ L, (iv) 80 μ L, (v) 100 μ L, and (vi) 120 μ L cu²⁺ solution to N4R2 containing 2 equiv. AsO₂⁻, and (c) Addition of (i) 20 μ L, (ii) 40 μ L, (iii) 60 μ L, (iv) 80 μ L, (v) 100 μ L, and (vi) 120 μ L Cu²⁺ solution to N4R3 containing 2 equiv. AsO₂⁻

Fig. S76 UV- Vis absorption intensity changes on stepwise addition of Cu^{2+} solution to (a) N4R1 containing 2 equivalence of AsO_2^- , (b) N4R3 containing 2 equivalence of AsO_2^- , and (c) N4R3 containing 2 equivalence of AsO_2^-

Fig. S77 Observed color changes on adding 2 equivalences of PO_4^{3-} ions on test strips with (a) N4R1 in 30% aq. Me₂SO, (b) N4R2 in 30% aq. Me₂SO and (c) N4R3 in 30% aq. Me₂SO

Fig. S78 A linear calibration plot of (a) $N4R1-AsO_2^-$ vs. the amount of AsO_2^- ions and (b) $N4R2-AsO_2^-$ vs. the amount of AsO_2^- ions for the quantitative analysis of food and water samples

Fig. S79 A linear calibration plot of N4R3–AsO₂⁻ vs. the amount of AsO_2^- ions for the quantitative analysis of food and water samples

Fig. S80 A linear calibration plot of (a) N4R1–PO₄^{3–} vs. the amount of PO₄^{3–} ions and (b) N4R2– PO₄^{3–} vs. the amount of PO₄^{3–} ions for the quantitative analysis of food and water samples

Fig. S81 A linear calibration plot of N4R3 $-PO_4^{3-}$ vs. the amount of PO_4^{3-} ions for the quantitative analysis of food and water samples

Table S1 Absorption maximum difference ($\Delta\lambda_{max}$) of N4R1-N4R3 (2 ×10⁻⁵ M) in the presence of AsO₂⁻, AsO₄³⁻, PO₄³⁻ ions (2 equiv.)

Receptor	Solvent system	$\lambda_{\max}(nm)$	$\Delta\lambda_{\max}(nm)$
N4R1+ AsO ₂ -	30% aq. MeCN	595	177
N4R1+ AsO4 ³⁻	30% aq. MeCN	601	183
N4R1+ PO ₄ ³⁻	30% aq. MeCN	592	174
N4R1+ AsO ₂ -	30% aq. Me ₂ SO	618	178
N4R1+ AsO4 ³⁻	30% aq. Me ₂ SO	619	179
N4R1+ AsO ₂ -	50% aq. Me ₂ SO	618	178
N4R1+ PO ₄ ³⁻	30% aq. Me ₂ SO	591	151
N4R2+ AsO ₂ -	30% aq. Me ₂ SO	675	227
N4R2+ AsO_4^{3-}	30% aq. Me ₂ SO	674	226
N4R2+ AsO ₂ -	50% aq. Me ₂ SO	675	227
N4R2+ PO ₄ ³⁻	30% aq. Me ₂ SO	656	208
N4R3+ AsO ₂ -	30% aq. Me ₂ SO	668	222
N4R3+ AsO4 ³⁻	30% aq. Me ₂ SO	668	222
N4R3+ AsO ₂ -	50% aq. Me ₂ SO	673	227
N4R3+PO ₄ ³⁻	30% aq. Me ₂ SO	668	222

Table S2 Binding ratio, binding constant, and detection limit of receptors N4R2 and N4R3 inthe presence of arsenite, arsenate and phosphate ions

Receptor +	Solvent System	Binding ratio	Binding Constant	Detection
Anion			(M ⁻¹)	Limit
				(ppb)
N4R2+ NaAsO ₂	30% aq. Me ₂ SO	1:1	9.686 × 10 ⁵	82.48
N4R2+ NaAsO ₂	50% aq. Me ₂ SO	1:1	3.348× 10 ⁶	36.38
$N4R2+ Na_3AsO_4$	30% aq. Me ₂ SO	1:1	1.791× 10 ⁶	68.02
$\mathbf{N4R2} + \mathbf{Na_3PO_4}$	30% aq. Me ₂ SO	1:1	4.446× 10 ⁵	304.12
N4R3+ NaAsO ₂	30% aq. Me ₂ SO	1:1	2.514× 10 ⁶	44.24
N4R3+ NaAsO ₂	50% aq. Me ₂ SO	1:1	1.927× 10 ⁶	37.01
$\mathbf{N4R3} + \mathbf{Na_3AsO_4}$	30% aq. Me ₂ SO	1:1	2.520× 10 ⁶	69.81
$\mathbf{N4R3} + \mathbf{Na_3PO_4}$	30% aq. Me ₂ SO	1:1	9.358× 10 ⁴	203.57

Table S3 Oscillator strength of Receptor- arsenite complexes

Receptor	Frequency (nm)	Oscillator strength
	470.20911627	0.01673332
	486.62519979	0.08977062
$N4R1 + AsO_2^{-1}$	507.04500791	0.04606335
	634.22674976	0.02802549
	827.65296604	0.00240035
	462.51567701	0.01430886
	492.02523177	0.0661842
N4R2+ AsO_2^-	514.15578255	0.1736253
	661.56117412	0.05790929
	788.82093965	0.00074214
	471.82908791	0.00092362
	494.98773793	0.07022809
N4R3+ AsO ₂ -	531.31456273	0.03769263
	689.02871961	0.07068465

799.00266924	0.00695228

Table S4 λ_{max} of N4R1- N4R3 and complexes calculated from the theoretical DFT method and experimental UV- Vis spectroscopy

Receptor	Theoretical λ_{max}	Experimental λ_{max} from UV- Vis
N4R1	462 nm	440 nm
N4R1+ AsO ₂ -	635 nm	618 nm
N4R2	496 nm	448 nm
N4R2+ AsO_2^-	663 nm	675 nm
N4R3	510 nm	446 nm
N4R3+ AsO_2^-	689 nm	673 nm

Table S5 Determination of AsO_2^- spiked into different food and water samples using N4R2 and N4R3

Receptor	Samples	AsO ₂ ⁻ spiked	AsO_2^- found	% Recovery	% RSD
		(µM)	(µM) (n=3)	(n=3)	
	Potato juice	3.0	2.98	99.33	0.08
N4R2	Cucumber	3.0	2.97	99.00	0.15
	juice				
	Tomato juice	3.0	2.99	99.67	0.20
	Apple juice	3.0	2.96	98.67	0.26
	Tap water	4.0	3.99	99.75	0.16
N4R2	River water	4.0	3.97	99.25	0.24
	Sea water	4.0	3.96	99.00	0.11
	Potato juice	4.0	3.95	98.75	0.09
N4R3	Cucumber	4.0	3.98	99.50	0.16
	juice				
	Tomato juice	4.0	3.98	99.50	0.13
	Apple juice	4.0	3.97	99.25	0.26
	Tap water	4.5	4.48	99.55	0.07
N4R3	River water	4.5	4.49	99.77	0.18
	Seawater	4.5	4.43	98.44	0.23

Receptor	Samples	PO ₄ ³⁻ spiked	PO ₄ ³⁻ found	% Recovery	% RSD
		(µM)	(µM) (n=3)	(n=3)	
	Potato juice	3.0	2.99	99.66	0.13
N4R2	Cucumber	3.0	2.96	98.66	0.17
	juice				
	Tomato juice	3.0	2.95	98.33	0.21
	Apple juice	3.0	2.98	99.33	0.05
	Tap water	4.0	3.98	99.50	0.12
N4R2	River water	4.0	3.99	99.75	0.21
	Seawater	4.0	4.08	102.00	0.26
	Potato juice	4.0	3.97	99.25	0.08
N4R3	Cucumber	4.0	3.95	98.75	0.13
	juice				
	Tomato juice	4.0	3.99	99.75	0.17
	Apple juice	4.0	3.96	99.00	0.20
	Tap water	4.5	4.43	98.44	0.16
N4R3	River water	4.5	4.49	99.77	0.15
	Seawater	4.5	4.55	101.11	0.19

Table S6 Determination of PO_4^{3-} spiked into different food and water samples using N4R2 and N4R3

Table S7: Determination of arsenite spiked into different food and water samples with one equivalent of various anions spiked ($F^+ AcO^+ H_2PO_4^- NO_3^-$)

Receptor	samples	Arsenite	Arsenite	% Recovery	% RSD
		spiked (µM)	found (µM)	(n=3)	
			(n=3)		
	Potato juice	3.0	2.99	99.67	0.17
N4R1+	Cucumber	3.0	2.97	99.00	0.06
Anions	juice				
	Tomato juice	3.0	2.97	99.00	0.28
	Apple juice	3.0	2.95	98.33	0.27

	Tap water	3.0	2.98	99.33	0.15
N4R1+	River water	3.0	2.99	99.66	0.18
Anions	Seawater	3.0	2.97	99.00	0.22
	Potato juice	2.5	2.48	99.20	0.34
N4R2+	Cucumber	2.5	2.47	98.80	0.24
Anions	juice				
	Tomato juice	2.5	2.48	99.20	0.11
	Apple juice	2.5	2.49	99.60	0.29
	Tap water	2.5	2.49	99.60	0.16
N4R2+	River water	2.5	2.47	98.80	0.26
Anions	Seawater	2.5	2.45	98.00	0.21
	Potato juice	4.0	3.96	99.00	0.28
N4R3+	Cucumber	4.0	3.98	99.50	0.06
Anions	juice				
	Tomato juice	4.0	3.97	99.25	0.24
	Apple juice	4.0	3.97	99.25	0.22
	Tap water	4.0	3.99	99.75	0.06
N4R3+	River water	4.0	3.96	99.00	0.16
Anions	Seawater	4.0	3.97	99.25	0.24

RSD: Relative standard deviation

Table S8: Determination of phosphate spiked into different food and water samples with oneequivalent of various anions spiked (F^-+ AcO $^-+$ $H_2PO_4^-+$ NO $_3^-$)

Receptor	samples	Phosphate	Phosphate	% Recovery	% RSD
		spiked (µM)	found (µM)	(n=3)	
			(n=3)		
	Potato juice	3.0	2.96	98.66	0.16
N4R1+	Cucumber	3.0	2.99	99.66	0.11
Anions	juice				
	Tomato juice	3.0	2.97	99.00	0.16
	Apple juice	3.0	2.98	99.33	0.21
	Tap water	3.0	2.99	99.66	0.07

River water	3.0	3.01	100.33	0.28
Sea water	3.0	3.03	101.00	0.22
Potato juice	4.0	3.97	99.25	0.18
Cucumber	4.0	3.97	99.25	0.14
juice				
Tomato juice	4.0	3.99	99.75	0.17
Apple juice	4.0	3.96	99.00	0.10
Tap water	4.0	3.97	99.25	0.22
River water	4.0	4.02	100.50	0.23
Sea water	4.0	4.07	101.75	0.09
Potato juice	5.0	4.98	99.60	0.11
Cucumber	5.0	4.96	99.20	0.15
juice				
Tomato juice	5.0	4.99	99.80	0.16
Apple juice	5.0	4.97	99.40	0.23
Tap water	5.0	4.99	99.80	0.17
River water	5.0	5.01	100.20	0.21
Seawater	5.0	5.08	101.60	0.27
	River water Sea water Potato juice Cucumber juice Tomato juice Apple juice Tap water River water Sea water Potato juice Cucumber juice Tomato juice Apple juice Tap water River water River water	River water3.0Sea water3.0Potato juice4.0Cucumber4.0juice4.0Tomato juice4.0Apple juice4.0Tap water4.0River water4.0Sea water4.0Potato juice5.0Cucumber5.0juice5.0Tomato juice5.0River water5.0Kiver water5.0Sea water5.0Sea water5.0Sea water5.0Sea water5.0Sea water5.0Sea water5.0Sea water5.0Sea water5.0Sea water5.0	River water 3.0 3.01 Sea water 3.0 3.03 Potato juice 4.0 3.97 Cucumber 4.0 3.97 juice 4.0 3.97 Tomato juice 4.0 3.99 Apple juice 4.0 3.96 Tap water 4.0 3.97 River water 4.0 3.96 Tap water 4.0 3.97 River water 4.0 4.02 Sea water 4.0 4.02 Sea water 4.0 4.07 Potato juice 5.0 4.98 Cucumber 5.0 4.96 juice 5.0 4.99 Apple juice 5.0 4.99 Apple juice 5.0 4.99 River water 5.0 5.01 Seawater 5.0 5.08	River water 3.0 3.01 100.33 Sea water 3.0 3.03 101.00 Potato juice 4.0 3.97 99.25 Cucumber 4.0 3.97 99.25 juice 4.0 3.97 99.25 Tomato juice 4.0 3.99 99.75 Apple juice 4.0 3.96 99.00 Tap water 4.0 3.97 99.25 River water 4.0 3.96 99.00 Tap water 4.0 3.97 99.25 River water 4.0 3.97 99.25 River water 4.0 4.02 100.50 Sea water 4.0 4.02 100.50 Sea water 4.0 4.07 101.75 Potato juice 5.0 4.98 99.60 Cucumber 5.0 4.99 99.80 juice 5.0 4.97 99.40 Tap water 5.0 5.01 100.20

RSD: Relative standard deviation