Electronic Supplementary Material (ESI) for Sensors & Diagnostics. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Synthesis and characterization of rhodamine derivative as a selective switch-on fluorescent sensor for Cu²⁺ in aqueous PBS buffer and living cells

Maheshkumar Prajapati^a, Nidhi Pandey^b, Sarita Kalla^c, Sateesh Bandaru^{*d} and Areti Sivaiah^{a*}

Corresponding author: Dr. Areti Sivaiah* - Department of Chemistry, Sardar Vallabhai National Institute of Technology Surat, Surat-Dumas road, Surat-395007, Gujarat, India; Orcid.org/0000-0002-0388-3588; E-mail: areti@chem.svnit.ac.in

Sr.No.	Table of content					
S1	Synthesis and characterization of P_2					
S2	Synthesis and characterization of L ₁					
S3	Synthesis and characterization of $\{L_1+Cu^{2+}\}$ Complex					
S4	Absorption titration L_1 with of various metals ions					
S5	Association constant obtained from the absorption titration of $\{L_1 + Cu^{2+}\}$ complex	9				
S6	Job's plot obtained from the absorption titration	9				
S7	Determination of Limit of Detection (LOD) of Cu^{2+} by L_1	9				
S8	Comparison of the detection limits of recently developed fluorescent probes for Cu^{2+} in the literature.	10				
S9	Competitive metal ion titration of L_1 with Cu^{2+} in presence of other metal ions.	11				
S10	Effect of pH on the fluorescence emission of L_1 with Cu^{2+} .	11				
S11	MTT assay of probe L ₁	12				
S12	Confocal fluorescence microscopy images study of L_1 in presence of Cu^{2+} in HeLa cells.	12				

S1. Synthesis and characterization of P2

P₁ (1.0 g, 1.0 mmol) was accurately weighed and placed in glass round-bottom flask, and 60.0 mL of ethanol was added to fully dissolve it. After cooling at room temperature and adding 4.0 mL (70.0 mmol) of hydrazine hydrate solution (85.0%), the mixture was magnetically stirred and refluxed until the colour of **P**₁ disappeared. The reaction solution was gradually cooled to room temperature, filtered under reduced pressure, and washed three times with ethyl alcohol to obtain the white solid product (**P**₂) in 65% yield (0.511 g).**FTIR** (**ATR, cm**⁻¹): 3430, 3343, 2948, 2866, 1687, 1613, 1510, 1200, 1150, 1003, 820, 739.¹**H NMR (600 MHz, CDCl₃) \delta(ppm):7.95(d, J = 4.88 Hz, 1H), 7.44(m, 2H), 7.05(d, J = 4.57 Hz, 1H), 6.38(s, 2H), 6.25(s, 2H), 3.57(s, 2H), 3.52(s, 2H), 3.21(dd, J = 7.14; 6.31 Hz, 4H), 1.90(s, 6H), 1.31(t, J = 7.08 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) \delta(ppm):166.21, 152.25, 151.76,147.54, 132.58, 129.87, 128.13, 127.69, 123.81, 123.03, 117.99, 104.94, 96.85, 66.05, 38.36, 16.70, 14.75.**

Fig.S1.¹H NMR spectrum of P₂ in CDCl₃

Fig.S1.¹³C NMR spectrum of P₂ in CDCl₃

Fig.S1. FT-IR spectra of P₂

Fig.S2. ¹H NMR spectrum of Ligand (L₁) in CDCl₃

¹³C NMR CDCl₃ L₁

Fig.S2. ¹³C-NMR spectrum of Ligand (L₁) in CDCl₃

Fig. S2. Mass Spectra of Ligand L_1 : Calculated: 510.64; Observed: 511.52 $[M+H]^+$.

Fig.S2. FT-IR spectra of L₁.

S3. Characterization of {L₁+Cu²⁺} complex

Fig.S3.¹H NMR spectrum of $\{L_1+Cu^{2+}\}$ complex in DMSO-d₆

Fig. S3. Overlay ¹H-NMR spectra of (a) Ligand (L_1) (b) { L_1+Cu^{2+} } Complex.

Fig.S4. Shows the absorbance spectra of L_1 (10 μ M) titrated with (0-20 eq.) of various concentrations of metals in ACN/PBS buffer (0.1 mM, pH 7.4, 1:1 of v/v).

S5. Association constant obtained from the absorption titration of $\{L_1+Cu^{2+}\}$ complex

Fig.S5. Binding constant (K_a) of Ligand (L₁) with Cu^{2+} concentration in ACN: PBS (0.1 mM, pH = 7.4, v/v 1:1).

S6. Job's plot obtained from the absorption titration

Fig.S6. Titration curve of L_1 and Cu^{2+} at constant concentration 20 mM in ACN: PBS solution (0.1 mM, pH= 7.4, 1:1 v/v).

S7. Determination of Limit of Detection (LOD) of Cu²⁺ by L₁

Fig.S7. Linear fluorescence relationship of Ligand (L₁) with Cu^{2+} (0-4µM) concentration in ACN: PBS (0.1 mM, pH = 7.4,v/v 1:1) at $\lambda_{em} = 558$ nm.

Sr.	Compound	Analyt	Solvent	LOD	Application	Ref.
No.		es	System			
1		Cu ²⁺ , Fe ³⁺	Aqueous medium	1.8 x 10 ⁻⁸ M	Trace out Fe ³⁺ in zebrafish	1
2		Cu ²⁺	Tris-HCl buffer	3.9 x 10 ⁻⁷ M	Lake water, drinking water	2
3		Cu ²⁺	ACN: H ₂ O	$5.2 \times 10^{-7} \mathrm{M}$	toxicity in Alzheimer disease	3
4		Cu ²⁺ , S ²⁻	ACN: H_2O Tris HCl buffer, pH= 6.5	5.54 x 10 ⁻⁷ M	HeLa cells	4
5		Cu ²⁺	ACN: HEPES buffer (pH 7.0, 1:1 of v/v)	28 x 10 ⁻⁸ M	Drinking water, Human serum, HeLa cells	5
6		Cu ²⁺ ,Fe ²⁺ , Fe ³⁺	DMF	2.48 x 10 ⁻⁶ M	NA	6
7		Cu ²⁺ , Al ³⁺	$\begin{array}{c} H_2O:ACN\\ (3:7, v/v, \\ HEPES\\ buffer, pH\\ 7.4) \end{array}$	321 nM	Cell imagine studies in SiHa cells	7
8		Hg ²⁺ , Cu ²⁺	DMF: H ₂ O (2:8, v/v)	1.91 x 10 ⁻⁷ M	On filter paper and in water	8
9		Cu ²⁺	ACN: PBS solution (0.1 mM, pH: 7.4, v/v =1:1)	3.58 x 10 ⁻⁸ M	L929 and HeLa cells	Present work

Table S8. Comparison of the detection limits of recently developed fluorescent probes for Cu^{2+} in the literature.

S09. Competitive metal ion titration of L_1 with Cu^{2+} in presence of other metal ions.

Fig.S09. Spectra from fluorescence titration of L_1 (10 μ M) with metal ions (100 μ M) and (b) Histograms showing the fluorescence emission intensity at 558 nm of L_1 with Cu²⁺ in the presence of competitive metal ions.

S10. Effect of pH on the fluorescence emission of L_1 with Cu^{2+} .

Fig. S10 Fluorescence response of (a) $L_1(10 \text{ mM})$, (b) $\{L_1+Cu^{2+}\}$ (10 eq.) and (c) corresponding fluorescence emission at 558 nm vs. pH range from 2 to 13.

S11. MTT assay of probe L₁

Fig. S11. MTT assay of probe L_1 (a) L929 cells and (b) HeLa cells treated with different concentrations of probe L_1 for 24 h.

S12. Confocal fluorescence microscopy images study of L_1 in presence of Cu^{2+} in HeLa cells.

Fig. S12: Confocal fluorescence microscopy images were obtained from HeLa cells (a) DIC image, (c) cells were incubated only with L_1 (10 μ M), (d) cells treated with L_1 followed by Cu^{2+} (20 μ M) green Chanel and (e) red Chanel and (f) merged image of b, d and e.

References

- A. S. Murugan, N. Vidhyalakshmi, U. Ramesh and J. Annaraj, Sensors and Actuators B: Chemical In vivo bio-imaging studies of highly selective, sensitive rhodamine based fl uorescent chemosensor for the detection of Cu 2+ / Fe 3+ ions, *Sensors Actuators B. Chem.*, 2018, 274, 22–29.
- 2 Q. Huang, Y. T. Chen, Y. W. Ren, Z. Y. Wang, Y. X. Zhu and Y. Zhang, A rapid and naked-eye visible rhodamine 6G-based chemosensor for sensitive detection of copper(ii) ions in aqueous solution, *Anal. Methods*, 2018, **10**, 5731–5737.
- B. S. Chauhan, A. Rai, A. K. Sonkar, K. Tripathi, S. Upadhyay, L. Mishra and S. Srikrishna, Neuroprotective Activity of a Novel Synthetic Rhodamine-Based Hydrazone against Cu²⁺-Induced Alzheimer's Disease in Drosophila, ACS Chem. Neurosci., 2022, 13, 1566-1579.
- 4 A. Majumdar, C. S. Lim, H. M. Kim and K. Ghosh, New Six-Membered pH-Insensitive Rhodamine Spirocycle in Selective Sensing of Cu2+ through C-C Bond Cleavage and Its Application in Cell Imaging, *ACS Omega*, 2017, **2**, 8167–8176.
- 5 P. Puangploy, S. Smanmoo and W. Surareungchai, A new rhodamine derivative-based chemosensor for highly selective and sensitive determination of Cu2+, *Sensors Actuators, B Chem.*, 2014, **193**, 679–686.
- 6 X. Zhu, Y. Duan, P. Li, H. Fan, T. Han and X. Huang, A highly selective and instantaneously responsive Schiff base fluorescent sensor for the 'turn-off' detection of iron(III), iron(II), and copper(II) ions, *Anal. Methods*, 2019, **11**, 642–647.
- 7 A. Rai, A. K. Singh, K. Tripathi, A. K. Sonkar, B. S. Chauhan, S. Srikrishna, T. D. James and L. Mishra, A quick and selective rhodamine based "smart probe" for "signal-on" optical detection of Cu2+ and Al3+ in water, cell imaging, computational studies and solid state analysis, *Sensors Actuators, B Chem.*, 2018, 266, 95–105.
- 8 M. Gosi, A. C. Kumar and Y. Sunandamma, Fluorescence Variation in Selective Sensing of Hg²⁺and Cu²⁺ Ions By Coumarin-xanthene Fused Optical Probe, J. *Fluoresc.*, 2022, **32**, 2379–2393.