Sustainable Agriculture with LEAFS: a Low-cost Electrochemical Analyzer of Foliage Stress: Supplementary Information

Sina Khazaee Nejad, Haozheng Ma, Abdulrahman Al-shami, Ali Soleimani, Mona A Mohamed, Preston Dankwah, Hannah J. Lee, and Maral P. S. Mousavi

1 Parameter optimization

The raw data of square-wave voltammetry response of 200 μ M Salicylic acid (SA) in a Britton-Robinson buffer of pH 2.4 without any background subtraction is presented in SFig. 4. There is a small peak observed around 0.4 V which is not related to SA and could be a sign of contamination in certain batches of electrodes. However, it does not interfere with the SA peak and does not affect the sensor's performance.

SFig. 1 Raw data of square-wave voltammetry response in 200 μ M SA solution.

2 Reproducibility test using SA

A reproducibility test using a 200 μ MSA in a Britton-Robinson buffer of pH 2.4 has been conducted within six independently fabricated electrodes. The relative standard deviation across the electrodes is 6.29%.

SFig. 2 A. SWVs of 200 µMSA in a Britton-Robinson buffer of pH 2.4 in six electrodes. B. The corresponding SA peak in six electrodes.

3 Electrode design

SFig. 3 Designs used to fabricate the electrodes. Both of them has a circular working electrode with a diameter of 4 mm. The left and right designs are used for calibration, and in-situ measurements, respectively.

4 Flexibility test

SFig. 4 A. The SA peak current of 200 μ MSA in Britton-Robinson buffer of pH 2.4 in SWVs over the course of 100 bending cycles. B. The corresponding SWV waveforms after 0, 25, 50, 75, and 100 bending cycles.

5 Prior works

STable. 1	Comparison of	of the reported	electrochemical	methods.
-----------	---------------	-----------------	-----------------	----------

Sensor	Materials used	Technique	Linear range/µM	$LOD/\mu M$	Reference
GCE	graphene oxide	DPV	25-1400	10	1
GCE	Chitosan and Au@Fe3O	DPV	1 - 1200	0.1	2
Disk graphit	polypyrrole and entrapment of banana tissue	DPV	0.1 - 100	0.089	3
CFE	NA	DPV	2 - 3000	1.68	4
ITO	Layer-by-layer films of carbon nanotubes, iron	CV	6-100	0.105	5
	nanoparticles and PDAC				
SPCE	Anodized Carbon	SWV	16 - 300	5.6	6
SPCE	Carbon	DPV	1 - 200	1.6	7
Graphite SPE	ZnO/Al2O3	DPV	0.5 - 80	0.25	8
LIG	Graphene	LSV	0.5 - 500	0.16	9
LIG	Graphene/Nafion	SWV	6.6-200	1.44	This work

GCE: glassy carbon electrode; CFE: carbon fiber electrode; ITO indium thin oxide; SPCE screen-printed carbon electrode; PDAC poly(diallyl dimethylammonium) chloride; LIG: laser-induced graphene.

References

- A. Vadivaambigai, P. A. Senthilvasan, N. Kothurkar and M. Rangarajan, Nanoscience and Nanotechnology Letters, 2015, 7, 140–146.
- [2] L.-J. Sun, Z.-Q. Pan, J. Xie, X.-J. Liu, F.-T. Sun, F.-M. Song, N. Bao and H.-Y. Gu, Journal of Electroanalytical Chemistry, 2013, 706, 127–132.
- [3] M. H. A. Zavar, S. Heydari and G. H. Rounaghi, Arabian Journal for Science and Engineering, 2013, 38, 29-36.
- [4] J. Park and C. Eun, *Electrochimica Acta*, 2016, **194**, 346–356.

- [5] C. d. L. Ribeiro, J. G. M. Santos, J. R. de Souza, M. A. Pereira-da Silva and L. G. Paterno, Journal of Electroanalytical Chemistry, 2017, 805, 53–59.
- [6] S. Rawlinson, A. McLister, P. Kanyong and J. Davis, Microchemical Journal, 2018, 137, 71–77.
- [7] W. Detpisuttitham, C. Phanthong, S. Ngamchana, P. Rijiravanich and W. Surareungchai, *Journal of Analysis and Testing*, 2020, 4, 291–297.
- [8] M. R. Ganjali, F. G. Nejad, S. Tajik, H. Beitollahi, E. Pourbasheer and B. Larijanii, International Journal of Electrochemical Science, 2017, 12, 9972–9982.
- [9] M. Li, P. Zhou, X. Wang, Y. Wen, L. Xu, J. Hu, Z. Huang and M. Li, Computers and Electronics in Agriculture, 2021, 191, 106502.