Supporting Information

Improved activity and stability of ZnIn₂S₄ for H₂ production

under visible light through Cerium UiO-66

Wenqing Hou, Chen Chen, Min Chen, and Yiming Xu*

State Key Laboratory of Silicon Materials and Department of Chemistry, Zhejiang University,

Hangzhou 310027, China.

* To whom correspondence should be addressed. Fax: +86 57187951895, Email: xuym@zju.edu.cn

Contents	Pages
Experimental procedures for sample synthesis	2/9
Table S1. Amounts of reagents used for synthesis	
Table S2. XPS peak assignment	3/9
Table S3. Literature survey for H ₂ production	4/9
Fig. S1 XRD, SEM and elemental mapping	5/9
Fig. S2 and S3 N_2 adsorption, absorption and emission spectra	6/9
Fig. S4 XPS spectra	7/9
Fig. S5 XRD and XPS spectra before and after photoreaction	
Fig. S6 Nyquist and Mott–Schottky plots	8/9
Reference	9/9

Experimental procedure for the synthesis of Zr-based UiO-66 (Zr-U66)

Zirconium UiO-66 (denoted as Zr-U66) was synthesized by following the previous report.¹ ZrCl₄ (233 mg), and terephthalic acid (166 mg) were dispersed in DMF (50 mL), followed by addition of 150 μ L CH₃COOH. After heating at 120 °C for 24 h, the solid was collected, washed with DMF and ethanol several times, and dried in a vacuum oven at 60 °C overnight. Then Zr-U66/ZIS was prepared with the same procedure used for Ce-U66/ZIS (see details in the text).

Table S1. Recipe for the synthesis of 20–50% Ce-U66/ZIS samples

Reagents	20%	30%	40%	50%	ZIS
Ce-U66 (mg)	20.0	30.0	40.0	50.0	0
ZnCl ₂ (mg)	43.9	38.4	32.9	27.4	54.8
InCl ₃ ·4H ₂ O (mg)	163.2	142.8	122.4	102	204
TAA (mg)	85.7	75.0	64.3	53.5	107

Table S2. XPS analysis for Ce³⁺ and Ce⁴⁺ species in different samples^a

	Ce-U66			30 Ce-U66/ZIS			30% Ce-U66/ZIS ^b		
Species	BE (eV)	A	Y (%)	BE (eV)	A	Y (%)	BE (eV)	A	Y (%)
Ce ³⁺	881.2	14307	44.0	881.2	6427		881.2	16917	49.0
	885.7	160971		885.6	136080	11 2	885.6	120649	
	899.2	28785		899.1	18083	44.5	899.1	17050	
	904.4	122772		904.2	85960		904.2	91493	
Ce ⁴⁺	882.9	88519	56.0	882.9	72630		882.9	65314	51.0
	887.5	63659		887.4	50128		887.4	42962	
	898.4	2272		898.3	600	EE 7	898.3	3424	
	901.5	78414		901.3	49018	55.7	901.2	47154	
	907.2	101342		907.1	82254		907.0	60017	
	917.1	81330		917.0	56194		917.0	37728	

^aBE, binding energy; *A*, peak area; *Y*, the relative content. ^bafter photoreaction for 8 h.

Samples	H_2 (µmol/h)	Cat. (mg/mL)	Sacrifices	Light source	Ref.
ZIS/Ce-U66	273.5	0.50	Na ₂ S/Na ₂ SO ₃	$\text{LED}/\lambda = 420 \text{ nm}$	This
Au/UiOS/ZIS	391.6	0.40	Na ₂ S/Na ₂ SO ₃	Xe/420-780 nm	[2]
ZIS/UiO-66	122.5	0.47	15% TEOA	$Xe/\lambda > 400 \text{ nm}$	[3]
ZIS/MIL-125-NH ₂	110.2	0.50	Na ₂ S/Na ₂ SO ₃	$Xe/\lambda > 420 \text{ nm}$	[4]
CdS/Ce-UiO-66-NH ₂	103	0.50	Na ₂ S/Na ₂ SO ₃	$\text{LED}/\lambda = 420 \text{ nm}$	[5]
CdS/UiOS	153.2	0.50	Na ₂ S/Na ₂ SO ₃	$Xe/\lambda > 420 \text{ nm}$	[6]
Pt/ZnCdS/Ti-MIL-125-NH ₂	391	0.20	20% TEOA	$Xe/\lambda > 420 \text{ nm}$	[7]
ZIS/CdS/Ti-MIL-125-NH ₂	923	1.0	20% MeOH	$Xe/\lambda > 400 \text{ nm}$	[8]
PdS/ZnCdS/Zr-UiO66-SH	461	0.50	Na ₂ S/Na ₂ SO ₃	$Xe/\lambda > 420 \text{ nm}$	[9]

Table S3. Literature survey for H_2 production on different photocatalysts^a

^aSH, 2,5-disulfanyl; TEOA, triethanolamine; MeOH, methanol; LED, 4 W light emitting diode.

Fig. S1 (A)XRD patterns for *x* Ce-U66/ZIS, where *x* (wt%) was (a) 20, (b) 30, (c) 40, and (d) 50. (B, C) SEM images and for Elemental mapping (a) Ce-U66, (b) ZIS, and (c) 30% Ce-U66/ZIS, and (D) HRTEM image for 30% Ce-U66/ZIS.

Fig. S2 (A) Isotherms of N_2 adsorption (solid symbols) and desorption (open symbols) on solids as indicated by the legends. (B1) Absorption and (C) photoluminescence spectra for *x*Ce-U66/ZIS, and (B2) the calculation of band energy for ZIS and Ce-U66.

Fig. S3 Absorption spectra for Zr-U66 and Ce-U66. 6

Fig. S4 XPS spectra of In 3d, Zn 2p, S 2p, and Ce 3d, for the samples as indicated by the legends

Fig. S5 XRD patterns and XPS spectra for the dark and 8 h-irradiated samples

Fig. S6 (A) Nyquist plots for a film electrode of (a) ZIS, (b) Ce-U66, and (c) 30% Ce-U66/ZIS, measured in the dark at a potential of 0.2 V (NHE) in 0.5 M NaClO₄ under N₂. (B) The corresponding Mott–Schottky plots, measured in the dark at $1-1 \times 10^6$ Hz.

References.

1 C. Gomes Silva, I. Luz, F. X. Llabrés i Xamena, A. Corma and H. García, Chem. Eur. J., 2010, 16, 11133–11138.

2 S. Mao, J Shi, G. Sun, D. Ma, C. He, Z. Pu and K. Song, Appl. Catal. B: Environ., 2021, 282, 119550.

3 X. Peng, L. Ye, Y. Ding, L Yi, C. Zhang and Z. Wen, Appl. Catal. B: Environ., 2020, 260, 118152.

4 H. Liu, J. Zhang and D. Ao, Appl. Catal. B: Environ., 2018, 221, 433–442.

5 W. Hou, C. Chen, Y. Wang and Y. Xu, *Catal. Sci. Technol.* 2022, **12**, 4012.

6 S. Mao, Y. Zou, G Sun, L. Zeng, Z. Wang, D. Ma, Y. Guo, Y. Cheng, C. Wang and J. Shi, *J. Colloid Interface Sci.*, 2021, **581**, 1–10.

7 C. Li, X. Liu, P. Huo, Y. Yan, G. Liao, G. Ding and C. Liu, Small, 2021, 17, 2102539

8 S. Zhang, M. Du, Z. Xing, Z. Li, K. Pan and W. Zhou, Appl. Catal. B, 2020, 262, 118202.

9 S. Mao, J. W. Shi, G. Sun, Y. Zhang, D. Ma, K. Song, Y. Lv, J. Zhou, H. Wang and Y. Cheng, *ACS Appl. Mater. Interfaces*, 2022, **14**, 48770–48779.