ELECTRONIC SUPPLIMENTARY INFORMATION

Highly selective production of bio-jet fuel grade alkanes over Fe/ SiO₂-Al₂O₃ solid acid catalyst under solvent-free conditions

Bhagirath Saini ^a, Meena Yadav^a, Shubham Kumar Jha^a, R. Krishnapriya^b, Preeti Kang ^a, Vishav Kant ^a, Rahul Singhal ^c, Rakesh K Sharma ^{a *}

^a Sustainable Materials and Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan India-342037

^b Mechanical and Aerospace Engineering Department, College of Engineering, United Arab Emirate University, Al Ain 15551, UAE

^c Department of Physics and Engineering Physics, Central Connecticut State University, New Britain, CT, 06050, USA

* Corresponding author

Prof. Rakesh K Sharma

Mailing address: Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan India-342037; Tel.: +91 9636133385; E-mail: <u>rks@iitj.ac.in</u>

Table S1	SEM-EDS elemental analysis data for SiO ₂ /Al ₂ O ₃ containing different Fe						
	loads.						
Figure S1-S5	SEM-EDS elemental mapping of pristine SiO ₂ -Al ₂ O ₃ and 4-10wt%						
	Fe/SiO ₂ -Al ₂ O ₃ catalyst.						
Table S2	BET analysis surface area and porosity of Fe-loaded SiO ₂ -Al ₂ O ₃ samples.						
Figure S6	Nitrogen adsorption-desorption isothermal of SiO ₂ /Al ₂ O ₃ .						
Figure S7	Temperature-programmed desorption of ammonia (NH ₃ -TPD) profiles of						
	10wt% SiO ₂ -Al ₂ O ₃ .						
Figure S8	GC chromatogram of 10% Fe/SiO ₂ /Al ₂ O ₃ catalyst at optimized reaction						
	conditions (Entry 5).						
Figure S9	GC chromatograms of 10% Fe/SiO ₂ -Al ₂ O ₃ catalyst at 1, 3 and 5 hours.						
Figure S10	GC chromatograms of 10% Fe/SiO ₂ -Al ₂ O ₃ catalyst at 400°C.						
Figure S11	GC chromatograms of 10% Fe/SiO ₂ -Al ₂ O ₃ catalyst at 3, 5 and 8 bar.						
Figure S12	e S12 GC chromatograms of pure Linseed FAME and Neem FAME (red) and at						
	hydrotreatment using 10% Fe/SiO ₂ -Al ₂ O ₃ (Blue) at 380°C, 5 bar for 5h.						
Table S13	GC chromatograms of pure Rapeseed FAME and Tung FAME (red) and						
	after hydrotreatment using 10% Fe/SiO ₂ -Al ₂ O ₃ (Blue) at 380°C, 5 bar for						
	5h.						

Table of contents

Figure S3	The major compositions of palm oil, Repeseed, Linseed, Neem, Soyabeen,				
	Sunflower and Corn oil.				
Figure S14	GC chromatogram of 10% Fe SiO ₂ /Al ₂ O ₃ catalyst at optimized reaction				
	conditions (Entry 5).				
Figure S15	Nitrogen adsorption-desorption isothermal of SiO ₂ /Al ₂ O ₃ .				
Figure S16	HRMS spectra of the pure methyl oleate spectra.				
Figure S17	HRMS spectra of 10% Fe/SiO ₂ -Al ₂ O ₃ catalyst at 5 h of reaction condition.				
Figure S18	¹ H NMR of the of catalytic hydrotreatment reaction using 10% Fe/SiO ₂ -				
	Al ₂ O ₃ catalyst.				
Figure S19	¹³ C NMR of the of catalytic hydrotreatment reaction using 10% Fe/SiO ₂ -				
	Al ₂ O ₃ catalyst.				

Elements	4% Fe/SiO ₂ /Al ₂ O ₃		6% Fe/SiO ₂ /Al ₂ O ₃		8% Fe/SiO ₂ /Al ₂ O ₃		10% Fe/ SiO_2/Al_2O_3	
	Weight%	Atomic%	Weight%	Atomic%	Weight%	Atomic%	Weight%	Atomic%
O K	51.24	65.99	50.84	65.99	54	68.85	53.81	70.42
Al K	2.92	2.16	2.81	1.94	2.27	1.71	1.95	1.45
Si K	42.01	30.04	40.31	29.84	36.27	26.68	34.5	24.58
Fe K	3.83	1.43	6.04	2.23	7.47	2.76	9.74	3.55

Table S1: SEM-EDS elemental analysis data for SiO₂/Al₂O₃ containing different Fe loads.

Figure S1: SEM-EDS elemental mapping of pristine SiO₂-Al₂O₃ catalyst.

Figure S2: SEM-EDS elemental mapping of 4 wt% Fe/SiO₂-Al₂O₃ catalyst.

Figure S3: SEM-EDS elemental mapping of 6 wt% Fe/SiO₂-Al₂O₃ catalyst.

Figure S4: SEM-EDS elemental mapping of 8 wt% Fe/SiO₂-Al₂O₃ catalyst.

Figure S5: SEM-EDS elemental mapping of 10 wt% Fe/SiO₂-Al₂O₃ catalyst

Sr. No	Catalyst	Surface Area	Pore Volume	Pore Radius
		(m^2g^{-1})	(CC/g)	(nm)
1	SiO ₂ -Al ₂ O ₃	213.86	0.280	3.59
1	4wt% Fe/SiO ₂ -Al ₂ O ₃	97.765	0.185	2.14
2	6wt% Fe/SiO ₂ -Al ₂ O ₃	89.237	0.094	1.93
3	8wt% Fe/SiO ₂ -Al ₂ O ₃	78.7111	0.0772	1.96
4	10wt% Fe/SiO ₂ -Al ₂ O ₃	52.209	0.0432	1.65

Table S2: BET analysis surface area and porosity of Fe-loaded SiO₂-Al₂O₃ samples.

Figure S6. Nitrogen adsorption-desorption isothermal of SiO_2/Al_2O_3 .

Figure S7: Temperature-programmed desorption of ammonia (NH₃-TPD) profiles of 10wt% SiO₂-Al₂O₃.

Figure S8: GC chromatogram of 10% Fe/SiO₂/Al₂O₃ catalyst at optimized reaction conditions (Entry 5).

Figure S9: GC chromatograms of 10% Fe/SiO₂-Al₂O₃ catalyst at 1, 3 and 5 hours.

Figure S10: GC chromatograms of 10% Fe/SiO₂-Al₂O₃ catalyst at 400°C.

Figure S11: GC chromatograms of 10% Fe/SiO₂-Al₂O₃ catalyst at 3, 5 and 8 bar.

Figure S12: GC chromatograms of pure Linseed FAME and Neem FAME (red) and after hydrotreatment using 10% Fe/SiO₂-Al₂O₃ (Blue) at 380°C, 5 bar for 5h.

Figure S13: GC chromatograms of pure Rapeseed FAME and Tung FAME (red) and after hydrotreatment using 10% Fe/SiO₂-Al₂O₃ (Blue) at 380°C, 5 bar for 5h.

Table S3: The major compositions of palm oil, Repeseed, Linseed, Neem, Soyabeen, Sunflower and Corn oil.

FAME/ Fatty acid profiles	Methyl palmitate (16:0)	Methyl stearate (18:0)	Methyl oleate (18:1)	Methyl linoleate (18:2)	Methyl linolenate (18:3)
Palm oil ¹	44	4.5	39.2	10.1	0.4
Rapeseed ²	4.8	0.14	62.73	22.4	7.50
Linseed ³	4.90-8.00	2.24-4.59	13.44- 19.39	12.25-17.44	39.90-60.42
Neem seed ⁴	18.1	18.1	44.45	18.3	0.2
Soyabeen ¹	11.0	4.0	23.4	53.2	7.8
Sunflower ¹	-	4.5	21.1	66.2	-
Corn ¹	6.5	2.2	27.5	57.0	0.9

Figure S14: Reusability GC chromatograms of 10% Fe/SiO2-Al2O3 catalyst up to 10 cycles.

Figure S15. Nitrogen adsorption-desorption isothermal of SiO₂/Al₂O₃.

Figure S17: HRMS spectra of 10% Fe/SiO₂-Al₂O₃ catalyst at 5h of reaction condition.

Figure S18: ¹H NMR of the of catalytic hydrotreatment reaction using 10% Fe/SiO₂-Al₂O₃ catalyst.

Figure S19: ^{13}C NMR of the of catalytic hydrotreatment reaction using 10% Fe/SiO_2-Al_2O_3 catalyst.

References:

1. D. O. Edem, *Plant Foods for Human Nutrition*, 2002, **57**, 319-341.

2. G. C. Cristea, D. Cazamir, D. Dima, C. Georgescu and L. Deleanu, *IOP Conference Series: Materials Science and Engineering*, 2018, **444**, 022011.

3. J. Campos, P. Severino, C. Ferreira, A. Zielińska, A. Santini, S. Souto and E. B. Souto, *Current medicinal chemistry*, 2019.

4. E. Aransiola, E. Betiku, I. Dio and T. Ojumu, *Afr J Biotechnol*, 2012, **11**, 6178-6186.