Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2023 ## Solution plasma synthesis of perovskite hydroxide CoSn(OH)₆ nanocube electrocatalysts toward oxygen evolution reaction Masaki Narahara¹, So Yoon Lee², Kodai Sasaki¹, Kaito Fukushima¹, Kenichi Tanaka¹, Sangwoo Chae³, Xiulan Hu⁴, Gasidit Panomsuwan⁵, Takahiro Ishizaki^{2,*} ¹Materials Science and Engineering, Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo 135-8548, Japan ²Department of Materials Science and Engineering, College of Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan ³SIT Research Laboratories, Shibaura Institute of Technology, Tokyo 135-8548, Japan ⁴College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China ⁵Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand *Corresponding author: ishizaki@shibaura-it.ac.jp Figure S1. XRD patterns of samples synthesized by co-precipitation method from aqueous solutions at different pH: (a) CSO_ pH8p, (b) CSO_ pH 9p, (c) CSO_ pH10p, and (d) CSO_ pH12p. Figure S2. FE-SEM images of samples synthesized by co-precipitation method from aqueous solutions at different pH: (a) CSO_pH8p, (b) CSO_pH 9p, (c) CSO_pH10p, and (d) CSO_p H12p. Figure S3. (a) Linear sweep voltammograms of the samples synthesized by co-precipitation method at different pH and commercial RuO₂, and (b) Tafel slopes of the samples synthesized by co-precipitation method at different pH and commercial RuO₂. Table S1 OER onset potentials, potentials at reaching 10 mA/cm², overpotentials at 10 mA/cm², and Tafel slope values of the samples synthesized by co-precipitation method at different pH, and commercial RuO₂. | Sample | OER Onset
Potentials
[V vs RHE] | Potentials at reaching
10 mA/cm ²
[V vs RHE] | Tafel Slopes
[mV/dec.] | |-----------|---------------------------------------|---|---------------------------| | CSO_pH12p | 1.550 | 1.731 | 75.08 | | CSO_pH10p | 1.545 | 1.757 | 78.23 | | CSO_pH9p | 1.565 | 1.767 | 79.40 | | CSO_pH8p | 1.570 | 1.785 | 82.35 | | RuO_2 | 1.475 | 1.659 | 73.34 | ## Calculation method of electrochemically active surface areas (ECSA) The ECSA of a material with similar composition is proportional to its electrochemical double-layer capacitance (C_{dl}), which was measured by CV in a non-Faradaic region at different scan rates (V_b) of 20, 50, 100, 200, 400, 600, 800, and 1000 mV s⁻¹ (Figure 9c and d). Then, the double-layer capacitance (C_{dl}) was estimated by plotting the $\Delta j = (j_a - j_c)$ at 1.273 V vs RHE as a function of the scan rate (Figure 9f). It can be calculated using the equation: $$C_{dl} = (\Delta j) / 2dV_b$$ Figure S4. XPS (a) Co 2p, (b) Sn 3d, and (c) O 1s spectra of CSO_pH12sp before and after CA test. Figure S5. XRD patterns of CSO_pH12sp (a) before and (b) after the CA test.