Supporting Information

Metal–Organic Framework-Derived Hollow Co₉S₈ Nanotube Arrays Coupled with Porous FeCo-P Nanosheets as Efficient Cathode Electrode Material for Hybrid Supercapacitor

Kosar Alitabar, Akbar Mohammadi Zardkhoshoui* and Saied Saeed Hosseiny Davarani*

Department of Chemistry, Shahid Beheshti University, G. C., 1983963113, Evin, Tehran, Iran.

Corresponding authors: *Tel: +98 21 22431661; Fax: +98 21 22431661; E-mail: ss-

hosseiny@sbu.ac.ir (S.S.H. Davarani); and mohammadi.bahadoran@gmail.com (A. Mohammadi

Zardkhoshoui)

Fig. S1 (a, b) FE-SEM images of the NF/Co(CO₃)_{0.5}(OH) precursors.

Fig. S2 (a, b) FE-SEM images of the NF/Co-MOF.

Fig. S3 FE-SEM image of the NF/CS.

Fig. S4 (a) FE-SEM image of the NF/FCP20. (b) FE-SEM image of the NF/FCP30. (c) (a) FE-SEM image of the NF/FCP40.

Fig. S5 EDX pattern of the CS4-FCP30 sample.

Fig. S6 TEM image of the CS sample.

Fig. S7 (a) XRD pattern of the $Co(CO_3)_{0.5}(OH)$. (b) XRD pattern of the Co-MOF.

Fig. S8 XPS survey of the CS4-FCP30.

Fig. S9 (a) CVs of the NF/CS, NF/CS2, NF/CS4, and NF/CS6 electrodes at 40 mV s⁻¹. (B) GCD curves of the NF/CS, NF/CS2, NF/CS4, and NF/CS6 electrodes at 1 A g⁻¹. (c) Specific capacities of the NF/CS, NF/CS2, NF/CS4, and NF/CS6 electrodes at 1 A g⁻¹.

Fig. S10 (a) CVs of the NF/CP30, NF/FCP20, NF/FCP30, and NF/FCP40 electrodes at 40 mV s⁻¹. (B) GCD curves of the NF/CP30, NF/FCP20, NF/FCP30, and NF/FCP40 electrodes at 1 A g⁻¹. (c) Specific capacities of the NF/CP30, NF/FCP20, NF/FCP30, and NF/FCP40 electrodes at 1 A g⁻¹.

Fig. S11 (A) CVs of the NF/CS4-FCP20, NF/CS4-FCP30, and NF/CS4-FCP40 electrodes at 40 mV s⁻¹. (B) GCD curves of the NF/CS4-FCP20, NF/CS4-FCP30, and NF/CS4-FCP40 electrodes at 1 A g⁻¹. (C) Specific capacities of the NF/CS4-FCP20, NF/CS4-FCP30, and NF/CS4-FCP40 electrodes at 1 A g⁻¹.

Fig. S12 Nyquist plots of the NF/Co(CO₃)_{0.5}(OH), NF/Co-MOF, NF/CS4, and NF/CS4-FCP30 electrodes (inset indicate the equivalent circuit model and magnified Nyquist curves).

Fig. S13 CV curves of the NF/CS4 electrode at various scan rates from 10 to 50 mV s⁻¹.

Fig. S14 Relative contribution of the capacitive and diffusion-controlled charge storage at various sweep speeds.

Fig. S15 GCD curves of the NF/CS4 electrode from 1 to 20 A $g^{\text{-}1}$.

Fig. S16 Durability test of the NF/Co(CO₃)_{0.5}(OH), NF/Co-MOF, and NF/CS4 electrodes

Fig. S17 Nyquist plots of the NF/CS4-FCP30 before and after durability test.

Fig. S18 XRD patterns of the CS4-FCP30 before and after durability test.

Fig. S19 (a) CV plots of the NF/AC at various scan rates from 10 to 50 mV s⁻¹. (b) GCD plots of the NF/AC@ at various current densities from 1 to 20 A g⁻¹. (c) Rate capability of the NF/AC electrode.

Element	Wt%	At%
Со	45.35	46.84
Fe	4.88	4.16
S	38.11	39.16
Р	11.66	9.84

 Table S1. Elemental composition of the CS4-FCP30 estimated by ICP-OE.

Based on the weight of Co (45.35 wt%) and S (38.11 wt%) elements, the content of the Co₉S₈ in the CS4-FCP30 is calculated as about 78.925 wt% [(45.35/10)×9 wt% + 38.11 wt%] and the content of the FeCo-P in the CS4-FCP30 is calculated as about 21.075 wt% (4.88 wt% + 45.35/10 + 11.66 wt%).

Composition	Capacity (C/g)	Cycles, retention	Rate capability	ED (Wh kg ⁻¹)	Reference
NiCoP	761 at 1 A g ⁻¹	50000, 90.2%	91.1% at 20 A g ⁻¹	35.6	1
NiCoMn-S-1.5	657.7 at 1 A g ⁻¹	50000, 90%	51.61% at 50 A g ⁻¹	36.3	2
C0 ₉ S ₈	926 at 1 A g ⁻¹	8000, 86%	67.4% at 15 A g ⁻¹	25.49	3
C0 ₃ S ₄ /g-C ₃ N ₄ -10	415 at 0.5 A g ⁻¹	5000, 75.6%	54.5% at 10 A g ⁻¹	37.7	4
NiCoMn-S	661 at 1 A g ⁻¹	1000, 86.45%	66.56% at 50 A g ⁻¹	42.1	5
Ni ₂ P/NiCoP	741.3 at 1 A g ⁻¹	30000, 89.2%	75.5% at 50 A g ⁻¹	44.5	6
Ni-Co-P/POx/C	583 at 1 A g ⁻¹	5000, 77.3%	62.7% at 30 A g ⁻¹	37.59	7
NF/CS4-FCP30	1590 at 1 A g ⁻¹	6500, 92.8 (3 E)	73.3% at 20A g ⁻¹	66.6	This work

Table S2. Comparison of the performance of the NF/CS4-FCP30 with other previously reported materials.

References

1 M. Gao, W.-K. Wang, X. Zhang, J. Jiang and H.-Q. Yu, J. Phys. Chem. C 2018, **122**, 25174–25182.

2 J. Zhang, C. Li, M. Fan, T. Ma, H. Chen and H. Wang, Appl. Surf. Sci. 2021, 565, 150482.

3 J. Li, Q. Li, J. Sun, Y. Ling, K. Tao and L. Han, Inorg. Chem. 2020, 59, 11174–11183.

4 W. Li, Y. Li, C. Yang, Q. Ma, K. Tao and L. Han, Dalton Trans 2020, 49, 14017-14029.

5 J. Cao, Y. Hu, Y. Zhu, H. Cao, M. Fan, C. Huang, K. Shu, M. He, H. C. Chen, *Chem. Eng. J* 2021, **405**, 126928.

6 Z. Li, K. Ma, F. Guo, C. Ji, H. Mi, P. Qiu and H. Pang, Mater. Lett. 2021, 288, 129319.

7 X. Zhang, J. Wang, Y. Sui, F. Wei, J. Qi, Q. Meng, Y. He and D. Zhuang, ACS Appl. Nano Mater. 2020, **3**, 11945–11954.