Supplementary Information

Room temperature hydrogen storage enhancement in copper-doped zeolitic imidazolate frameworks with trioctylamine

Syedvali Pinjari^{a,b}, Tapan Bera^b, Erik Kjeang^{a,*}

^aFuel Cell Research Laboratory, Simon Fraser University, 250-13450 102 Avenue, Surrey, BC V3T0A3, Canada

^bAlternative Energy, Indian Oil R&D Centre, Sector-13, Faridabad, 121002, India

Lsec: 30.0 0 Cnts 0.000 keV Det: Octane Prime Det

Figure S1 EDX spectrum of ZIF-8.

Lsec: 30.0 0 Cnts 0.000 keV Det: Octane Prime Det

Figure S2 EDX spectrum of ZIF-8-T.

Figure S3 EDX spectrum of CuZIF-8.

Lsec: 30.0 0 Cnts 0.000 keV Det: Octane Prime Det

Figure S4 EDX spectrum of CuZIF-8-T.

Figure S5 Elemental mapping of ZIF-8 and CuZIF-8 from TEM/EDX.

Samples	Particle size range (nm)	Average particle size (nm)	Product yield (%)
ZIF-8	100 - 320	252	90.21
ZIF-8-T	100 - 558	474	93.40
CuZIF-8	100 - 186	159	86.78
CuZIF-8-T	100 - 275	152	89.74

Table S1 Particle size and product yield of all four materials.

Table S2 Elemental composition of the adsorbents from XPS survey spectra.

Samples	C1s	N1s	O1s	Zn2p	Cu2p
ZIF-8	66.4	20.7	6.6	6.3	-
ZIF-8-T	65.6	21.4	5.7	7.3	-
CuZIF-8	68.5	17.1	7.7	5.6	1.1
CuZIF-8-T	68.1	22.4	2.4	6.1	1

Figure S6 Deconvoluted high-resolution XPS spectra of ZIF-8.

Figure S7 Deconvoluted high-resolution XPS spectra of ZIF-8-T.

Figure S8 Deconvoluted high-resolution XPS spectra of CuZIF-8.

	C1s			N1s			Ols			
Samples	C-C	C-N	π-π*	N-C	N-H	N-Zn or N-Cu	Extra N	C=C	Zn-OH or Cu-OH	H ₂ O
ZIF-8	50.9	49.1	-	45.4	31.8	19.3	3.6	61.9	23.0	15.1
	(284.3)	(285.1)		(398.8)	(399.4)	(400.1)	(407.1)	(532.1)	(533.0)	(534.1)
	ZIE 9 т 44.1 55.9		45.7	31.3	23.0		69.0	12.3	18.8	
Z1F-8-1	(284.2)	(285.0)	-	(398.9)	(399.3)	(399.8)	-	(532.2)	(533.1)	(533.9)
CuZIF-8 57.6 (284.5)	57.6	42.4	-	44.2	34.6	21.2	-	47.4	33.3	19.2
	(284.5)	(285.4)		(398.9)	(399.2)	(400.0)		(531.8)	(532.5)	(533.9)
CuZIF-8-T	48.4	48.7	2.9	57.3	17.2	25.5		17.6	36.0	46.5
	(284.6)	(285.3)	(291.6)	(399.0)	(399.5)	(400.5)	-	(531.3)	(532.3)	(533.1)

Table S3 Fitting results of deconvoluted high-resolution XPS spectra given in at. %, with binding energy mentioned in parenthesis.

Table S4 Fitting results of deconvoluted high-resolution XPS spectra of Zn2p. The values are in at. %, with binding energy mentioned in parenthesis.

Sampla	Zn2p			
Sample	Zn2p3/2	Zn2p1/2		
ZIF-8	66.9 (1019.6)	33.1 (1042.7)		
ZIF-8-T	66.7 (1019.7)	33.3 (1042.8)		
CuZIF-8	66.3 (1022.9)	33.7 (1045.9)		
CuZIF-8-T	67.2 (1022.8)	32.8 (1045.9)		

Samples		Yield		
	Onset	Inflection	Endpoint	(wt.%)
ZIF-8	432.2	466.1	530.0	34.8
ZIF-8-T	437.3	485.4	575.9	33.4
CuZIF-8	442.1	488.2	617.9	34.2
CuZIF-8-T	423	536.6	564.4	34.9

Table S5 TGA and DTG results of the synthesized materials.

Figure S9 Linear trend between hydrogen uptake and specific surface area for the four samples.