Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2023

Supporting Information

p-n Junction formation between CoPi and α -Fe₂O₃ layers enhances photo-charge separation and catalytic efficiencies for efficient visible light-driven water oxidation

Tomohiro Katsuki,[†] Zaki N. Zahran,^{†, ‡*} Yuta Tsubonouchi,[†] Debraj Chandra,[†] Norihisa Hoshino[†] and Masayuki Yagi ^{†*}.

[†]Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata 9050-2181, Japan.

[‡]Faculty of Science, Tanta University, Tanta 5111, Egypt.

*Correspondence to: yagi@eng.niigata-u.ac.jp and znzahran@eng.niigata-u.ac.jp

Contents

- Table S1 Summary of PEC performances of the state-of-the-art α -Fe₂O₃/CoPi-based electrodes.
- Figure S1 Nyquist plots and fitting curves for (a) α -Fe₂O₃ and (b) α -Fe₂O₃/CoPi electrodes.

Table S2 Summary of Fitting parameter provided by PEIS analysis.

Electrodes ^{b)}	Preparation	$E_{\rm on}$	$E_{\rm on}$ shift ^{c)}	$\eta_{ m sep}$	$\eta_{ m cat}$	IPCE ₄₂₀	ABPE _{max}	Ref.
	Method	(V vs. RHE)	(mV)	(%) ^{d)}	(%) ^{d)}	(%) ^{d)}	(%)	
α-Fe ₂ O ₃ /CoPi	Casting	0.65 ^{e)}	200 ^{e)}	33 f)	70 ^{f)}	20	1.2 ^{f)}	This work
Ga ₂ O ₃ / <i>a</i> -Fe ₂ O ₃ /CoPi	ALD	0.60 ^{g)}	100 ^{g)}	na	na	na	na	R1
α-Fe ₂ O ₃ -CF/CoPi	APCVD	0.83	170	na	na	40	na	R2
α-Fe ₂ O ₃ -CF/CoPi	APCVD	0.80	100	na	na	8	na	R3
α-Fe ₂ O ₃ -IO/CoPi	ED	0.88	120	na	na	30 ^h)	na	R4
α-Fe ₂ O ₃ -NRs/N-CoPi	HT	0.70	50	na	na	7	na	R5
α-Fe ₂ O ₃ -CL/CoPi	HT	0.80	110	na	na	na	na	R6
α-Fe ₂ O ₃ -NRs/CoPi	HT	0.81	110	na	na	12	0.12	R7
α -Fe ₂ O ₃ -CL/CoPi-NaBH ₄	HT	0.70	100	na	na	na	0.13	R6
α-Fe ₂ O ₃ -PNs/CoPi	HT	0.68 ⁱ)	160 ⁱ⁾	17 ⁱ⁾	90 ⁱ⁾	na	na	R 8
α-Fe ₂ O ₃ -NRs/CoPi	HT	0.80	~200	na	80	20	0.21	R9
Co-Pi/CaFe ₂ O ₃ /α-Fe ₂ O ₃ BNRs	APCVD	0.64	80	na	na	na	na	R10

Table S1 Summary of PEC water oxidation performances of the state-of-the-art α-Fe₂O₃/CoPi-based electrodes.^{a)}

^{a)} Measured in a 1.0 M NaOH (pH 14.0) electrolyte solution, under 1 sun AM 1.5G, ALD: atomic layer deposition, na: not available, CF: cauliflower, APCVD: atmospheric pressure chemical vapor deposition, IO: inverse opal, ED: electrochemical deposition, NRs: nanorods, N-CoPi: nitrogen doped CoPi, HT: hydrothermal, CL: coralline, PNs: porous nanorods, BNRs: branched nanorods, ^{b)} coated on basal FTO electrodes, ^{c)} defined as the E_{on} difference between the α -Fe₂O₃ and α -Fe₂O₃/CoPi electrodes, ^{d)} at 1.23 V vs. RHE, ^{e)} Xenon lamp (> 420 nm, 100 mW cm⁻²), ^{f)} monoclinic light (420 nm, 7.06 mW cm⁻²) from LED, ^{g)} 1.0 M KOH with HCl as supporting, ^{h)}at 0.5 V vs. Ag/AgCl (1.53 V vs RHE), ⁱ⁾ 0.1 M KOH (pH 12.6)

References:

- R1 O. Zandi and T. W. Hamann, Journal of Physical Chemistry Letters, 2014, 5, 1522–1526.
- R2 D. K. Zhong, M. Cornuz, K. Sivula, M. Grätzel and D. R. Gamelin, *Energy Environ Sci*, 2011, 4, 1759–1764.
- R3 D. K. Zhong, J. Sun, H. Inumaru and D. R. Gamelin, *J Am Chem Soc*, 2009, **131**, 6086–6087.
- R4 X. Shi, K. Zhang and J. H. Park, *Int J Hydrogen Energy*, 2013, **38**, 12725–12732.
- R5 H. Lee, K. H. Kim, W. H. Choi, B. C. Moon, H. J. Kong and J. K. Kang, ACS Appl Mater Interfaces, 2019, 11, 44366–44374.
- R6 J. Xiao, L. Fan, F. Zhao, Z. Huang, S. F. Zhou and G. Zhan, *J Catal*, 2020, **381**, 139–149.
- R7 J. Xiao, L. Fan, Z. Huang, J. Zhong, F. Zhao, K. Xu, S. F. Zhou and G. Zhan, *Chinese Journal of Catalysis*, 2020, **41**, 1761–1771.
- R8 G. Liu, N. Li, Y. Zhao, M. Wang, R. Yao, F. Zhao, Y. Wu and J. Li, ACS Sustain Chem Eng, 2019, 7, 11377–11385.
- R9 T. T. Li, Q. Zhou, J. Qian, Y. Hu and Y. Q. Zheng, *Electrochim Acta*, 2019, **307**, 92–99.
- R10 D. Chen, Z. Liu, Z. Guo, M. Ruan and W. Yan, ChemSusChem, 2019, 12, 3286–3295.

Figure S1. Nyquist plots and fitting curves using an equivalent circuit (inset of Figure 7A) for (a) α -Fe₂O₃ and (b) α -Fe₂O₃/CoPi electrodes in a 1.0 M NaOH solution (pH 14.0) at frequencies from 100 mHz to 20 kHz at different potentials (*E*) of 0.68-1.53 V vs RHE (-0.35 – 0.50 V vs Ag/AgCl) under visible light irradiation (>420 nm, 100 mW cm⁻²).

α-Fe ₂ O ₃ electrode			High frequency		Low frequency			
			CPE ^{bulk}			CPE ^{surf}		
E vs RHE	$R_{\rm sol}\left[\Omega\right]$	$R_{\mathrm{ct}}^{\mathrm{bulk}}[\Omega]$	$T_{\rm CPE}^{\rm bulk} \left[\mu {\rm F~s}^{(p-1)}\right]$	р	$R_{ m ct}^{ m surf} \left[\Omega ight]$	$T_{\rm CPE}^{\rm surf} \left[\mu {\rm F} \ {\rm s}^{(p-1)} \right]$	р	
0.68	14.5	132	27.7	0.921	5.17×10 ¹³	13.4	0.942	
0.73	14.4	193	34.7	0.888	6.07×10^{9}	20.3	0.962	
0.78	14.1	201	42.5	0.851	7.82×10^{6}	33.5	0.966	
0.83	13.7	221	51.0	0.817	7.77×10^{4}	48.9	0.965	
0.88	13.5	250	50.2	0.809	1.33×10^{4}	62.0	0.950	
0.93	13.4	298	47.7	0.808	5120	64.9	0.929	
0.98	13.3	302	46.1	0.806	3120	69.8	0.901	
1.03	13.3	223	39.7	0.816	1950	103	0.860	
1.08	13.4	161	29.7	0.843	906	180	0.825	
1.13	13.6	148	23.4	0.864	385	268	0.807	
1.18	13.6	177	21.3	0.872	195	290	0.822	
1.23	13.7	252	21.2	0.870	131	232	0.878	
1.28	13.7	368	21.2	0.867	118	144	0.947	
1.33	13.7	499	21.7	0.862	121	89.2	1.00	
1.38	13.6	564	22.1	0.857	147	58.9	1.00	
1.43	13.6	535	21.5	0.857	188	41.7	0.997	
1.48	13.6	477	21.0	0.857	199	44.8	0.962	
1.53	13.6	411	20.2	0.859	191	51.1	0.930	

Table S2 Fitting parameters of components of R_{sol} , R_{ct} and CPE analyzed in the equivalent circuit (inset of Figure 7A) at different potentials (*E*) for α -Fe₂O₃ and α -Fe₂O₃/CoPi electrodes.

α-Fe ₂ O ₃ /CoPi electrode			High frequency		Low frequency			
			CPE ^{bulk}	CPE ^{surf}				
E vs RHE	$R_{\rm sol}\left[\Omega\right]$	$R_{ ext{ct}}^{ ext{bulk}}[\Omega]$	$T_{\rm CPE}^{\rm bulk} \left[\mu {\rm F} \ {\rm s}^{(p-1)} \right]$	р	$R_{ m ct}^{ m surf}\left[\Omega ight]$	$T_{\rm CPE}^{\rm surf} \left[\mu {\rm F} \ {\rm s}^{(p-1)} \right]$	р	
0.68	13.6	96.4	62.3	0.846	5100	92.7	0.735	
0.73	13.3	91.9	67.5	0.821	2730	153	0.831	
0.78	13.4	76.1	47.7	0.851	654	225	0.863	
0.83	13.5	97.8	37.0	0.875	270	279	0.851	
0.88	13.6	186	30.4	0.895	232	251	0.838	
0.93	13.7	385	26.2	0.909	269	187	0.829	
0.98	13.8	631	24.4	0.914	301	154	0.830	
1.03	13.8	740	24.0	0.914	340	153	0.760	
1.08	13.8	708	24.3	0.911	409	191	0.646	
1.13	13.7	676	25.7	0.905	404	193	0.634	
1.18	13.7	594	27.0	0.899	417	167	0.628	
1.23	13.7	511	28.8	0.893	420	167	0.603	
1.28	13.7	451	30.3	0.888	380	162	0.623	
1.33	13.7	390	30.8	0.887	349	168	0.629	
1.38	13.6	367	31.4	0.883	287	199	0.635	
1.43	13.6	356	30.5	0.884	232	248	0.638	
1.48	13.6	347	28.0	0.888	192	274	0.658	
1.53	13.6	353	25.0	0.896	160	313	0.662	