Electronic Supplementary Information (ESI) for

Electrochemical nitrogen reduction to ammonia using mesoporous iron oxide with abundant oxygen vacancies

Toshihiro Takashima,*ab Takumi Mochidaa and Hiroshi Irie ab

^{a.} Integrated Graduate School of Medicine, Engineering and Agricultural Sciences, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan

^{b.} Clean Energy Research Center, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan

Contents

ESI-1) Schematic illustration of an electrochemical cell used in this study. (Fig. S1)

ESI-2) Determination of NH₃. (Fig. S2)

ESI-3) Determination of N_2H_4 . (Fig. S3)

ESI-4) TEM image of KIT-6 template. (Fig. S4)

ESI-5) Results of XPS measurements. (Fig. S5-S7)

ESI-6) H₂ yield and FE of the HER. (Fig. S8)

ESI-7) Characterization of meso- α -Fe₂O₃ after the stability test. (Fig. S9)

ESI-8) ECSA determination using electrochemical double-layer capacitance. (Fig. S10)

ESI-9) N₂-TPD profiles of meso- α -Fe₂O₃ and nano- α -Fe₂O₃. (Fig. S11)

ESI-10) Computational calculation details. (Table S1)

ESI-11) Comparison of NRR performances of Fe-oxide electrocatalysts. (Table S2)

ESI-12) Simulation of proton adsorption. (Table S3)

ESI-1) Schematic illustration of an electrochemical cell used in this study.

Fig. S1 Schematic illustration of an H-type electrochemical cell used in this study. The electrolyte was continuously purged with N_2 gas throughout the measurements.

ESI-2) Determination of NH₃.

Fig. S2 (a) UV–vis absorption spectra of indophenol assays with NH₄Cl after incubated for 1 h at room temperature. (b) Calibration curve used for calculation of NH₃ concentrations.

ESI-3) Determination of N₂H₄.

Fig. S3 (a) UV–vis absorption spectra of indophenol assays with N_2H_4 after incubated for 10 min at room temperature. (b) Calibration curve used for calculation of N_2H_4 concentrations.

ESI-4) TEM image of KIT-6 template.

Fig. S4 TEM image of KIT-6 template.

ESI-5) Results of XPS measurements.

Fig. S5 XPS survey spectrum of meso- α -Fe₂O₃.

Fig. S6 XPS O 1s spectrum of nano- $\alpha\text{-}\text{Fe}_2\text{O}_3$ after the KOH treatment.

Fig. S7 XPS Fe 2p spectra of meso- α -Fe₂O₃ and nano- α -Fe₂O₃.

ESI-6) H₂ yield and FE of the HER.

Fig. S8 (a) The amounts of evolved H_2 and (b) the calculated FEs of the H_2 evolution reaction at each given potential.

ESI-7) Characterization of meso- α -Fe₂O₃ after the stability test.

Fig. S9 XPS Fe 2p spectra of meso- α -Fe₂O₃ coated on the electrode before and after the six consecutive cycling tests at -0.15 V.

Fig. S10 Cyclic voltamograms of (a) meso- α -Fe₂O₃ and (b) nano- α -Fe₂O₃ at different scan rates, and (c) corresponding plots of current density differences ($\Delta j/2$) at 0.4 V versus scan rate.

ESI-9) N₂-TPD profiles of meso- α -Fe₂O₃ and nano- α -Fe₂O₃.

Fig. S11 N₂ temperature-programmed desorption (N₂-TPD) profiles of meso- α -Fe₂O₃ and nano- α -Fe₂O₃. Both samples show two peaks in the range of 350-750 K. The former peak at a lower temperature can be assigned to the desorption of physically adsorbed N₂ and the latter peak at higher temperature can be attributed to the desorption of chemically adsorbed N₂.

ESI-10) Computational calculation details.

Species	ZPE / eV	TS / eV
N ₂ (g)	0.27	0.41
H ₂ (g)	0.15	0.60
NH ₃ (g)	0.89	0.60
*NN	0.22	0.21
*NNH	0.52	0.14
*NNHH	0.80	0.13
*N	0.09	0.06
*NH	0.45	0.06
*NH ₂	0.70	0.08
*NH ₃	1.00	0.07

Table S1 Calculated zero-point energy (ZPE) and entropy corrections (TS) for all relevantcompounds and adsorbed intermediates.

ESI-11) Comparison of NRR performances of Fe-oxide electrocatalysts.

Catalyst	Electrolyte	Potential	NH ₃ yield	FE (%)	Ref.
Fe ₂ O ₃ /CNT	0.5 M KOH	−2.0 V (vs Ag/AgCl)	0.534 µg h⁻¹ cm⁻²	0.164	[1]
γ-Fe ₂ O ₃	0.1 M KOH	0.0 V (vs RHE)	12.5 nmol h ⁻¹ mg _{cat} ⁻¹	1.9	[2]
o-Fe ₂ O ₃ -Ar	0.1 M KOH	-0.9 V (vs Ag/AgCl)	0.46 µg h⁻¹ cm⁻²	6.04	[3]
Fe/Fe ₃ O ₄	0.1 M PBS	−0.3 V (vs RHE)	0.19 µg h⁻¹ cm⁻²	8.29	[4]
Fe ₂ O ₃ nanorod	0.1 M Na ₂ SO ₄	−0.8 V (vs RHE)	15.9 µg h ⁻¹ mg _{cat} ⁻¹	0.94	[5]
rGO/Fe@Fe ₃ O ₄ /CP	0.2 M NaHCO ₃	−0.3 V (vs RHE)	1.3 × 10 ⁻¹⁰ mol s ⁻¹ cm ⁻²	6.25	[6]
γ-Fe ₂ O ₃ -NC/CF	0.1 M HCI	−0.1 V (vs RHE)	11.7 × 10 ⁻¹⁰ mol s ⁻¹ mg _{cat} ⁻¹	12.3	[7]
Fe ₂ O ₃ /TiO ₂ /C	1.0 M KOH	−0.577 V (vs RHE)	2.7×10^{-10} mol s ⁻¹ mg _{cat} ⁻¹	0.31	[8]
Fe ₂ O ₃ nanorod/CC	0.1 M Na ₂ SO ₄	−0.4 V (vs RHE)	13.6 µg h⁻¹ mg _{cat} ⁻¹	7.69	[9]
Fe ₂ O ₃ -IL	0.1 M KOH	−0.3 V (vs RHE)	32.1 µg h⁻¹ mg _{cat} ⁻¹	6.63	[10]
Au/Fe ₃ O ₄	0.1 M KOH	−0.2 V (vs RHE)	21.4 µg h⁻¹ mg _{cat} ⁻¹	10.5	[11]
Fe ₂ O ₃ NP	0.1 M Na ₂ SO ₄	−0.5 V (vs RHE)	22 µg h ⁻¹ mg _{cat} ⁻¹	3.5	[12]
Fe ₃ C/Fe ₂ O ₃ /Fe/C	6M KOH	0.1 V (vs RHE)	0.3 µg h ⁻¹ mg _{cat} ⁻¹	0.38	[13]
Zn-doped Fe ₂ O ₃	0.1 M Na ₂ SO ₄	-0.5 V (vs RHE)	15.1 μg h ⁻¹ mg _{cat} ⁻¹	10.4	[14]
meso-α-Fe ₂ O ₃	0.1 M Li ₂ SO ₄	-0.15 V (vs RHE)	15.3 μg h ⁻¹ mg _{cat} ⁻¹	13.2	This study

Table S2 Comparison of NRR performances of Fe-oxide electrocatalysts in the literature.

ESI-12) Simulation of proton adsorption.

Table S3 Calculated Gibbs free energy changes (ΔG) upon proton adsorption on meso- α -

 Fe_2O_3 and nano- α - Fe_2O_3 .

Catalysts	∆G / eV		
meso- α -Fe ₂ O ₃	-0.328		
nano-α-Fe ₂ O ₃	-0.329		

References

- [1] S. Chen, S. Perathoner, C. Ampelli, C. Mebrahtu, D. Su and G. Centi, *ACS Sustain. Chem. Eng.*, 2017, **5**, 7393.
- [2] J. Kong, A. Lim, C. Yoon, J. H. Jang, H. C. Ham, J. Han, S. Nam, D. Kim, Y.-E. Sung, J. Choi and H. S. Park, *ACS Sustain. Chem. Eng.*, 2017, **5**, 10986.
- [3] X. Cui, C. Tang, X. M. Liu, C. Wang, W. Ma and Q. Zhang, *Chem. Eur. J.*, 2018, **24**, 18494.
- [4] L. Hu, A. Khaniya, J. Wang, G. Chen, W. E. Kaden and X. Feng, ACS Catal., 2018, 8, 9312.
- [5] X. Xiang, Z. Wang, X. Shi, M. Fan and X. Sun, *ChemCatChem*, 2018, **10**, 4530.
- [6] C. Li, Y. Fu, Z. Wu, J. Xia and X. Wang, *Nanoscale*, 2019, **11**, 12997.
- [7] Y. Li, Y. Kong, Y. Hou, B. Yang, Z. Li, L. Lei and Z. Wen, ACS Sustain. Chem. Eng., 2019, 7, 8853.
- [8] R. Manjunatha, A. Karajic, V. Goldstein and A. Schechter, ACS Appl. Mater. Interfaces, 2019, **11**, 7981.
- [9] Z. Wang, K. Zheng, S. Liu, Z. Dai, Y. Xu, X. Li, H. Wang and L. Wang, ACS Sustain. Chem. Eng., 2019, **7**, 11754.
- [10] C. Zhang, S. Liu, T. Chen, Z. Li and J. Hao, *Chem. Commun.*, 2019, **55**, 7370.
- [11] J. Zhang, Y. Ji, P. Wang, Q. Shao, Y. Li and X. Huang, Adv. Funct. Mater., 2019, **30**, 1906579.
- [12] M. Wang, F. Li and J. Liu, *RSC Adv.*, 2020, **10**, 29575.
- [13] J. H. Kim, H. Ju, B. S. An, Y. An, K. Cho, S. H. Kim, Y. S. Bae and H. C. Yoon, *ACS Appl. Mater. Interfaces*, 2021, **13**, 61316.
- [14] S. Yu, Q. Wang, J. Wang, Y. Xiang, X. Niu and T. Li, *Int. J. Hydrogen Energy*, 2021, **46**, 14331.