Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

Electrochemical hydrogen evolution reaction catalysed by a dinuclear cobalt complex with doubly N-confused hexaphyrin

Risa Takada,^a Takashi Nakazono,^{b*} Taiyo Nishimura,^a Takuya Shiga,^c Masayuki Nihei,^c Yusuke Yamada,^{bd} and Tohru Wada^{a*}

 ^aDepartment of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan.
 ^bResearch Center for Artificial Photosynthesis (ReCAP), Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.
 ^cDepartment of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan.
 ^dDepartment of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.

Fig. S1 LSVs using the complex-modified electrode in 0.10 M phosphate buffer solutions (pH 2.0, 3.0, 6.0-12) and 0.10 M acetic acid buffer solutions (pH 4.0, 5.0). $\nu = 0.10$ Vs⁻¹. Working electrode: glassy carbon (0.071 cm²) modified with 35 µg cm⁻² of MW-CNT and 2.8 nmol cm⁻² of **Co₂DNCH**, temp: 295 K, under Ar atmosphere.

Fig. S2 A plot of E_{HER} for Co₂DNCH vs. pH of phosphate buffer solutions.

Fig. S3 LSVs using the complex-modified electrodes in a 0.10 M phosphate buffer solution (pH 7.0). Working electrode: grassy carbon electrode (0.071 cm²) modified with Co_2DNCH and MW-CNT (red), MW-CNT (grey), MW-CNT after measurement of LSV using the Co_2DNCH modified electrode and rinsing the electrode with acetone (dashed line).

Fig. S4 LSVs using the complex-modified electrodes in a 0.10 M phosphate buffer solution (pH 7.0). Working electrode: grassy carbon electrode (0.071 cm²) modified with **CoPF**₅ and MW-CNT (blue), MW-CNT (grey), MW-CNT after measurement of LSV using the **CoPF**₅ modified electrode and rinsing the electrode with acetone (dashed line).

Fig. S5 Electrochemical H_2 evolution from 0.10 M phosphate buffer solution (pH 7.0) using Co₂DNCH (red) and CoPF₅ (blue) modified onto a glassy carbon electrode at -1.1 V.

Table 51 Redox potentials of Co2Divert and Co1 F3 in Divit				
Potential (V vs. SCE)				
	-1/0	-2/-1	-3/-2	-4/-3
CoPF ₅	-0.60	-1.59		
Co ₂ DNCH	-0.47	-0.80	-1.49	-1.65

Table S1 Redox potentials of Co₂DNCH and CoPF₅ in DMF

Fig. S6 Plots of (a) $\chi_m T$ vs. T and (b) M - H curve for a dried sample of Co₂DNCH.

DFT calculation

Furuta et al. have reported the crystal structure of Co₂DNCH in which the five-coordinated geometry of two Co²⁺ ions are coordinated by DNCH and aqua.¹ The two aqua ligands on Co ions bond to two THF molecules by hydrogen bonds, respectively. Based on this crystal structure, three initial structure models: (a) $[Co_2(OH_2)_2DNCH] + 4THF$, (b) $[Co_2(OH_2)_2DNCH]$, and (c) [Co₂DNCH]) were prepared and optimised calculations were performed with the calculation methods described in the experimental section of the main text. The models **a** and **c** reproduced well the bond lengths and bond angles between the central metal and ligands in the crystal structure (Table S2, Fig. S8). The structure optimization calculations for b resulted in a dominant intramolecular hydrogen bond between the ketone moiety in DNCH and the aqua ligand (Fig. S8). This is because of the absence of THF, which forms an intermolecular hydrogen bond with the aqua ligand in the crystal. The most stable spin state from singlet to septet was estimated to be the septet (2S+1 = 7) in all computational models (Table S3). In addition to the high reproducibility of the crystal structure in models a and c, the septet state is by far the most stable compared to the other spin states, supporting the results of the magnetic measurements. Therefore, the influence of the aqua ligand on the results of the energy and structure calculations is insignificant. Furthermore, the aqua ligand on Co ions of Co2DNCH would be labile in DMF solution. For these reasons, the model in c was used in the following calculations.

			Model	
	crystal	a	b	c
rCo ₁ -O ₂	1.932	2.023	2.089	2.035
rCo ₁ -N ₆	2.139	2.169	2.143	2.006
<i>r</i> Co ₁ -N ₅	2.007	2.035	2.036	2.052
rCo₁−N₄	2.052	2.119	2.119	2.071
<i>r</i> Co ₁ -Co ₅₁	4.802	4.865	4.694	4.801
$\angle O_2$ -Co ₁ -N ₅	137.8	135.9	138.2	150.0
$\angle N_2$ -Co ₁ -N ₄	174.5	168.4	177.6	169.0
$\angle O_2$ -Co ₁ -O ₃	108.7	109.9	88.2	-
$\angle O_{27}$ -Co ₅₁ -O ₅₂	108.7	110.8	88.2	-

 Table S2 Selected bond lengths (Å) and angles (°) of Co₂DNCH determined by X-ray analysis of the single crystal and DFT calculations.

Fig. S7 Structure of geometry optimization using the initial structure models **a**, **b**, and **c** (2S+1 = 7).

$\Delta E / \text{kcal mol}^{-1}$				
models	Singlet	Triplet	Quintet	Septet
a	77.5	16.0	9.39	0.00
b	15.2	15.2	7.91	0.00
c	65.7	9.8	27.1	0.00

Table S3 Relative energies of Co₂DNCH using different computational models.

Fig. S8 Overlaid structures of crystal structure of Co_2DNCH (blue) and geometry optimization (2S+1 = 7) using c (orange).

Fig. S9 DFT-derived spin density plots of Co_2DNCH and the one- and two-electron-reduced forms.

Spin state	[Co ₂ DNCH]	[Co ₂ (DNCH)] ⁻	[Co ₂ (DNCH ²⁻)] ²⁻
singlet	65.7	-	45.0
triplet	9.78	-	14.4
quintet	27.1	-	29.9
septet	0.00	-	0.00
nonet	18.9	-	25.8
doublet	-	17.0	-
quintet	-	12.5	-
sextet	-	33.3	-
octet	-	0.00	-

Table S4 Relative energies (kcal mol⁻¹) of the different spin states of Co₂DNCH and the oneand two-electron reduced forms.

Cartesian coordinates of optimized geometries

$[Co_2DNCH]$ (c, 2S + 1 = 7)				
SCF done: I	E(UB3LYP) =	-1921.8744432	21	
Co	-2.05441400	0.27315000	1.21155300	
0	-1.00272500	0.94601100	-0.39601300	
Ν	-0.27623200	-0.17115400	2.16223800	
Ν	-2.92477900	0.61912400	3.03758900	
Ν	-3.89548100	0.32588600	0.26525800	
С	-0.90296600	0.40746600	-1.53500300	
С	-2.03970800	0.02543900	-2.43348900	
С	-3.42161700	0.01580700	-2.20058200	
С	-4.22911600	0.17212800	-1.07037600	
С	-5.66945900	0.19687100	-1.21659300	
Н	-6.19137900	0.09308700	-2.15963000	
С	-6.19843500	0.39500700	0.02173000	
Н	-7.24030400	0.48430600	0.30257900	
С	-5.08858400	0.47337300	0.94065200	
С	-5.25965200	0.69184100	2.31349100	
Č	-4.26431400	0.77805700	3.28414600	
Č	-4 47499400	1 03684600	4 69125700	
H	-5 43996900	1 19518700	5 15628900	
C	-3 24311600	1 03763400	5 28169800	
н	-3 00156400	1 19438900	6 32549100	
C	-2 27906300	0.75918800	4 24109200	
C	-0.89832300	0.64470000	4 42448700	
C C	0.03690300	0.27139300	3 46019800	
C C	1 43548000	0.27139300	3 64255000	
U U	1.43346000	0.32300800	3.04233000	
П	1.93030200	0.03//3400	4.34988700	
U N	1.00272300	-0.94001100	0.39001300	
IN N	0.27623200	0.1/113400	-2.10223800	
IN N	2.924//900	-0.01912400	-3.03/38900	
N C	3.89548100	-0.32588600	-0.26525800	
C	0.90296600	-0.40/46600	1.53500300	
C	2.039/0800	-0.02543900	2.43348900	
C	3.42161/00	-0.01580/00	2.20058200	
C	4.22911600	-0.1/212800	1.0/03/600	
C	5.66945900	-0.1968/100	1.21659300	
H	6.1913/900	-0.09308700	2.15963000	
C	6.19843500	-0.39500/00	-0.021/3000	
H	7.24030400	-0.48430600	-0.30257900	
С	5.08858400	-0.4/33/300	-0.94065200	
С	5.25965200	-0.69184100	-2.31349100	
С	4.26431400	-0.77805700	-3.28414600	
С	4.47499400	-1.03684600	-4.69125700	
Н	5.43996900	-1.19518700	-5.15628900	
С	3.24311600	-1.03763400	-5.28169800	
Н	3.00156400	-1.19438900	-6.32549100	
С	2.27906300	-0.75918800	-4.24109200	
С	0.89832300	-0.64470000	-4.42448700	
С	-0.03690300	-0.27139300	-3.46019800	
С	-1.43548000	-0.32300800	-3.64255000	
Н	-1.93656200	-0.63775400	-4.54988700	
Со	2.05441400	-0.27315000	-1.21155300	

Н	-4 00494300	-0 17568500	-3 10006300
Н	0.51175200	-0.87624700	-5.41286500
Н	6 28431400	-0.81239000	-2 65261400
н	4 00494300	0.17568500	3 10006300
н	-0.51175200	0.87624700	5 41286500
и И	-6.28/31/00	0.87024700	2 65261400
11	-0.20+31+00	0.01257000	2.03201400
[Co ₂ (DNC)	$(c 2S + 1)^{-1}$	1 = 8)	
SCF Done:	E(UB3LYP) =	-1922.048258	11
Со	-2.06292100	0.28495800	1.20989600
0	-1.00871400	1.00267000	-0.39523800
Ν	-0.27097500	-0.18809400	2.15689400
Ν	-2.94101300	0.62428100	3.03680500
N	-3.91608700	0.31694700	0.26914300
C	-0.91353100	0.43503400	-1.53712200
C	-2 03824700	0.04575600	-2 42021300
C	-3 43873000	0.05257600	-2 20193300
C	-4 24580100	0.18669700	-1 08022600
C C	-5 69157500	0.21015000	-1 22287600
ч	-6 21/07100	0.12024500	-2 16807700
II C	6 222/7700	0.12024500	-2.10007700
С ц	7 26627400	0.38402900	0.01709000
II C	5 11182500	0.40550800	0.29713900
C C	-5.11105500	0.43002100	0.94/39300
C C	-3.28/98900	0.00033000	2.31088800
C	-4.2/910900	0.76744100	3.291/2200
C	-4.48383200	1.03066100	4.6941/500
H	-5.44/25800	1.1812/600	5.16684/00
C	-3.23923600	1.049/2400	5.28232400
H	-2.99/89/00	1.21606300	6.325/3400
C	-2.28277400	0.77817900	4.24584000
C	-0.89/9/400	0.66911000	4.41105900
C	0.03479600	0.28045200	3.44888500
C	1.43/20600	0.334/3100	3.62304200
Н	1.94362400	0.66515400	4.52342800
0	1.00871400	-1.00267000	0.39523800
Ν	0.27097500	0.18809400	-2.15689400
Ν	2.94101300	-0.62428100	-3.03680500
Ν	3.91608700	-0.31694700	-0.26914300
С	0.91353100	-0.43503400	1.53712200
С	2.03824700	-0.04575600	2.42021300
С	3.43873000	-0.05257600	2.20193300
С	4.24580100	-0.18669700	1.08022600
С	5.69157500	-0.21015000	1.22287600
Н	6.21407100	-0.12024500	2.16807700
С	6.22247700	-0.38402900	-0.01769600
Н	7.26627400	-0.46556800	-0.29713900
С	5.11183500	-0.45602100	-0.94739300
С	5.28798900	-0.66633600	-2.31688800
С	4.27910900	-0.76744100	-3.29172200
С	4.48383200	-1.03066100	-4.69417500
Н	5.44725800	-1.18127600	-5.16684700
С	3.23923600	-1.04972400	-5.28232400
Н	2.99789700	-1.21606300	-6.32573400

2.28277400	-0.77817900	-4.24584000
0.89797400	-0.66911000	-4.41105900
-0.03479600	-0.28045200	-3.44888500
-1.43720600	-0.33473100	-3.62304200
-1.94362400	-0.66515400	-4.52342800
2.06292100	-0.28495800	-1.20989600
-4.01356700	-0.11348100	-3.11288100
0.50159200	-0.91474700	-5.39388800
6.31331000	-0.77457500	-2.66058500
4.01356700	0.11348100	3.11288100
-0.50159200	0.91474700	5.39388800
-6.31331000	0.77457500	2.66058500
	$\begin{array}{c} 2.28277400\\ 0.89797400\\ -0.03479600\\ -1.43720600\\ -1.94362400\\ 2.06292100\\ -4.01356700\\ 0.50159200\\ 6.31331000\\ 4.01356700\\ -0.50159200\\ -6.31331000\\ \end{array}$	2.28277400-0.778179000.89797400-0.66911000-0.03479600-0.28045200-1.43720600-0.33473100-1.94362400-0.665154002.06292100-0.28495800-4.01356700-0.113481000.50159200-0.914747006.31331000-0.774575004.013567000.11348100-0.501592000.91474700-6.313310000.77457500

 $[Co_2(DNCH^{2-})]^{2-}(c, 2S + 1 = 7)$ SCE Dense E(UB31 VP) = -1922 14903113

SCF Done: $E(UB3LYP) = -1922.14903113$					
Co	-2.08389400	0.29985900	1.21302800		
0	-1.00795600	1.02288300	-0.40260500		
Ν	-0.27898500	-0.17772200	2.15195800		
Ν	-2.96265400	0.63169300	3.04937800		
Ν	-3.91516000	0.31873000	0.27764000		
С	-0.90950900	0.44694600	-1.54481500		
С	-2.03317500	0.06471500	-2.42565900		
С	-3.45030700	0.10363500	-2.20523000		
С	-4.24328400	0.21008900	-1.08088200		
С	-5.69831100	0.22305600	-1.21790200		
Η	-6.21934700	0.14518600	-2.16583000		
С	-6.23133600	0.36472900	0.02027300		
Η	-7.27787700	0.42765600	0.29759700		
С	-5.12474700	0.43935400	0.96439800		
С	-5.31462600	0.63852500	2.31862500		
С	-4.30315100	0.75941300	3.31327900		
С	-4.50217400	1.02494500	4.70109400		
Η	-5.46286500	1.16920500	5.18300200		
С	-3.23873600	1.06349500	5.28696400		
Η	-2.99601000	1.23644500	6.32995200		
С	-2.29680700	0.80360400	4.25496400		
С	-0.89499700	0.70172500	4.39674400		
С	0.02118000	0.29740000	3.44326100		
С	1.43918800	0.33803700	3.61138300		
Η	1.94754800	0.66976200	4.51154400		
0	1.00795600	-1.02288300	0.40260500		
Ν	0.27898500	0.17772200	-2.15195800		
Ν	2.96265400	-0.63169300	-3.04937800		
Ν	3.91516000	-0.31873000	-0.27764000		
С	0.90950900	-0.44694600	1.54481500		
С	2.03317500	-0.06471500	2.42565900		
С	3.45030700	-0.10363500	2.20523000		
С	4.24328400	-0.21008900	1.08088200		
С	5.69831100	-0.22305600	1.21790200		
Н	6.21934700	-0.14518600	2.16583000		
С	6.23133600	-0.36472900	-0.02027300		
Η	7.27787700	-0.42765600	-0.29759700		
С	5.12474700	-0.43935400	-0.96439800		

С	5.31462600	-0.63852500	-2.31862500
С	4.30315100	-0.75941300	-3.31327900
С	4.50217400	-1.02494500	-4.70109400
Н	5.46286500	-1.16920500	-5.18300200
С	3.23873600	-1.06349500	-5.28696400
Η	2.99601000	-1.23644500	-6.32995200
С	2.29680700	-0.80360400	-4.25496400
С	0.89499700	-0.70172500	-4.39674400
С	-0.02118000	-0.29740000	-3.44326100
С	-1.43918800	-0.33803700	-3.61138300
Η	-1.94754800	-0.66976200	-4.51154400
Co	2.08389400	-0.29985900	-1.21302800
Η	-4.02721400	-0.02919300	-3.12080200
Н	0.48695400	-0.97087100	-5.36987100
Н	6.34423300	-0.72664900	-2.65800800
Н	4.02721400	0.02919300	3.12080200
Н	-0.48695400	0.97087100	5.36987100
Н	-6.34423300	0.72664900	2.65800800

Fig. S10 CVs of **Co₂DNCH** (0.25 mM) in DMF solutions in the absence (black) and presence of 20-100 equivalents (a) and 120-200 equivalents (b) of Et₃NHCl. Working electrode: grassy carbon (0.071 cm²), counter electrode: Pt wire, reference electrode: Ag/AgNO₃, scan rate: 0.10 V s⁻¹, electrolyte: *n*-Bu₄NClO₄ (100 mM), temp: 295 K, under Ar atmosphere. All potentials were converted to voltages *vs*. SCE.

Fig. S11 Plots of i_{cat}/i_p of **Co₂DNCH** vs. square root of the concentration of Et₃NHCl. Measurements were performed in DMF of 0.25 mM **Co₂DNCH** (a) and **CoPF**₅ (b) with several amount of Et₃NHCl (0.5-50 mM). Working electrode: glassy carbon (0.071cm²), counter electrode: Pt, reference electrode: Ag/AgNO₃, electrolyte: *n*-Bu₄NClO₄ (100 mM), temp: 295 K, under Ar atmosphere.

Fig. S12 (a)CVs of **Co₂DNCH** (0.25 mM) in DMF solutions in the absence (black) and presence of 200 equivalents of Et₃NHCl. (b) A plot of i_{cat} vs. v. Measurements were performed in DMF of 0.25 mM **Co₂DNCH** (c) A plot of the ratio of i_{cat} to i_p as a function of the inverse of the square root of the scan rate obtained from CVs of DMF solutions containing 0.25 mM of **Co₂DNCH** Working electrode: grassy carbon (0.071 cm²), counter electrode: Pt wire, reference electrode: Ag/AgNO₃, scan rate: 0.10-2.00 V s⁻¹, electrolyte: *n*-Bu₄NClO₄ (100 mM), temp: 295 K, under Ar atmosphere. All potentials were converted to voltages *vs*. SCE.

Fig S13 CVs of **Co₂DNCH** (0.25 mM) in DMF solutions in the absence (black) and presence of 20 equivalents of (a)Et₃NHCl, (b) AcOH and (c) PhOH. Working electrode: grassy carbon (0.071 cm²), counter electrode: Pt wire, reference electrode: Ag/AgNO₃, scan rate: 5.00 mV s⁻¹, electrolyte: *n*-Bu₄NClO₄ (100 mM), temp: 295 K, under Ar atmosphere. All potentials were converted to voltages *vs*. SCE.

Fig S14 CVs of **Co₂DNCH** (0.25 mM) in DMF solutions in the absence (black) and presence of 20 equivalents of Et₃NHCl (red). Working electrode: grassy carbon (0.071 cm²), counter electrode: Pt wire, reference electrode: Ag/AgNO₃, scan rate: 100 mV s⁻¹, electrolyte: *n*-Bu₄NClO₄ (100 mM), temp: 295 K, under Ar atmosphere. All potentials were converted to voltages *vs.* SCE.

Fig. S15 CVs of DMF solutions containing Co_2DNCH (a), Co_2DNCH in the presence of 2 eq. of Et₃NHCl (b), **H₄DNCH** (c), and **Co₂DNCH** in the presence of 20 eq. of Et₄NCl. Working electrode: glassy carbon (0.071 cm²), counter electrode: Pt, reference electrode: Ag/AgNO₃, Complex: 0.25 mM, electrolyte: *n*-Bu₄NClO₄ (100 mM), scan rate: 5 mV s⁻¹, temp: 295 K. All potentials were converted to voltages *vs.* SCE.

Fig. S16 CVs of **Co₂DNCH** (0.25 mM) in DMF solutions in the absence (black) and presence of several amounts of PhOH (a) or AcOH (b). Working electrode: grassy carbon (0.071 cm²), counter electrode: Pt wire, reference electrode: Ag/AgNO₃, scan rate: 0.10 V s⁻¹, electrolyte: *n*-Bu₄NClO₄ (100 mM), temp: 295 K, under Ar atmosphere. All potentials were converted to voltages *vs*. SCE.

Fig. S17 CVs of **Co₂DNCH** (0.25 mM) in DMF solutions in the absence (black) and presence of 50 mM AcOH(red) or AcOD (blue). Working electrode: grassy carbon (0.071 cm²), counter electrode: Pt wire, reference electrode: Ag/AgNO₃, scan rate: 0.10 V s⁻¹, electrolyte: *n*-Bu₄NClO₄ (100 mM), temp: 295 K, under Ar atmosphere. All potentials were converted to voltages *vs.* SCE.

Scheme S1 Proposed mechanism of Co₂DNCH with PhOH or AcOH as a proton source.

References

1. M. Suzuki, M. C. Yoon, D. Y. Kim, J. H. Kwon, H. Furuta, D. Kim and A. Osuka, *Chem. Eur. J.*, 2006, **12**, 1754-1759.