Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2023

Supporting Information

High Voltage Ionic Liquid Based Flexible Solid Polymer Electrolyte for high-Performance Li-Ion battery

Rushikesh B. Kale, Sahebrao S. More, Nageshwar D. Khupse, Ramchandra S. Kalubarme, Milind V. Kulkarni, Sunit B. Rane, Bharat B. Kale*

[†]Centre for Materials for Electronic Technology (C-MET), Ministry of Electronics and

Information Technology (MeitY), Govt. of India, Panchawati, Off Pashan Road, Pune 411008,

India.

E-mail: <u>bbkale@cmet.gov.in</u>, <u>bbkale1@gmail.com</u>

Experimental Section:

The details of loading of cathode with C-rates are given below

Table S1: The details of loading of cathode with C-rates

Cell Configuration	LFP loading	0.1C	0.2 C	0.5 C	1C
	(mg)	(mA)	(mA)	(mA)	(mA)
Li/SPE-IL-II/LFP	3.008	0.05113	0.1022	0.2556	0.5113

S.	Composition	Ionic	Temp	Reference
No		Conductivity		
		(S/cm)		
1	PEO+PTFE	6.62×10^{-8}	Room	Jokhakar, Deep A., et al. "All-solid-state
			Temperature	Li-metal batteries: role of blending PTFE
				with PEO and LiTFSI salt as a composite
				electrolyte with enhanced thermal
				stability." Sustainable Energy Fuels, 2020,
				4, 2229-2235
2	PEO+HEMC	1.30×10-4	Room	Wu, Hailong, et al. "A branched cellulose-
			Temperature	reinforced composite polymer electrolyte
				with upgraded ionic conductivity for anode
				stabilized solid-state Li metal
				batteries." Sustainable Energy Fuels, 2019,
				3, 2642-2656.
3	VBIm+PEG	1.4×10^{-4}	Room	Zhang, Fengrui, et al. "Highly conductive
	DA		Temperature	polymeric ionic liquid electrolytes for
				ambient-temperature solid-state lithium
				batteries." ACS Appl. Mater.
				Interfaces 2020, 12, 23774–23780
4	CTA+PEGM	1.24×10^{-3}	Room	
	A+EMIM		Temperature	Our System
	TFSI			

 Table S2: The comparative literature data on the reported system

¹H NMR:

Figure S1: ¹H NMR for [EMIM][TFSI] 1-Ethyl-3-methyl-imidazolium Bis(trifluromethanesulfonyl) imide ionic liquids

Nyquist Plot of SPE

Figure S2: Impedance plot of SPE membranes

Flame Retardant Test

Figure S3: Flame Test of SPE-IL-II

Figure S4: FESEM study after charge – discharge

Figure S5: Impedance plot of SPE IL-II at different temperatures

Figure S6: Strip-plate analysis at 0.1 mA cm⁻²

Figure S7: Cyclic voltagram of Li/SPE-IL-II/SS

Figure S8: a) Galvanastatic charge-discharge of half-cell Li/1M LiPF₆ EC:DMC(1:1v)/LFP at different current densities, b) Discharge capacity and coulombic efficiency at 1C of half-cell Li/1M LiPF₆ EC:DMC(1:1v)/LFP