A novel biorefinery concept based on marginally used halophyte biomass

Maxwel Monção,^a Petter Paulsen Thoresen,^a Tobias Wretborn,^a Heiko Lange,^{a,b,c} Ulrika Rova,^a Paul Christakopoulos^a and Leonidas Matsakas^{a,*}

^a Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden

^b Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy

^c NBFC – National Biodiversity Future Center, 90133 Palermo, Italy

*Corresponding author: Leonidas Matsakas, Department of Civil, Environmental and Natural Resources Engineering, SE-971 87 Luleå Sweden, leonidas.matsakas@ltu.se, tel.: +46 (0) 920 493043

List of supplementary figures:

Figure S1 : Base peak chromatogram of S. ramosissima pretreated at 180 °C for 30 min with 60% ethanol; the MS2 inserts show the major glycans at m/z 367 and 353. Optional interpretations are shown
Figure S2 : Combined mass spectra and base peak chromatogram of S. ramosissima pretreated at 160 °C for 30 min with 60% ethanol; the MS2 inserts show the major glycans at m/z 501 and 563. Optional interpretations are shown
Figure S3 : Base peak chromatograms of S. ramosissima pretreated at 180 °C for 15 min with 40% and 60% ethanol, as well as at 180 °C for 30 min with 40% ethanol. The samples were analyzed in negative ion mode
Figure S4: HSQC and quantitative ¹³ C NMR spectra of lignin sample 0A4
Figure S5: HSQC and quantitative ¹³ C NMR spectra of lignin sample 0A66
Figure S6: HSQC and quantitative ¹³ C NMR spectra of lignin sample 0B47
Figure S7: HSQC and quantitative ¹³ C NMR spectra of lignin sample 0B68
Figure S8: HSQC and quantitative ¹³ C NMR spectra of lignin sample 0C49
Figure S9: HSQC and quantitative ¹³ C NMR spectra of lignin sample 0C610
Figure S10: HSQC and quantitative ¹³ C NMR spectra of lignin sample 1A4
Figure S11: HSQC and quantitative ¹³ C NMR spectra of lignin sample 1A6
Figure S12: HSQC and quantitative ¹³ C NMR spectra of lignin sample 1B413
Figure S13: HSQC and quantitative ¹³ C NMR spectra of lignin sample 1B614
Figure S14: HSQC and quantitative ¹³ C NMR spectra of lignin sample 1C415
Figure S15: HSQC and quantitative ¹³ C NMR spectra of lignin sample 1C616
Figure S16: HSQC and quantitative ¹³ C NMR spectra of lignin sample 1D4
Figure S17: HSQC and quantitative ¹³ C NMR spectra of lignin sample 1D6
Figure S18: HSQC and quantitative ¹³ C NMR spectra of lignin sample 2B419
Figure S19: HSQC and quantitative ¹³ C NMR spectra of lignin sample 2B620

Figure S1: Base peak chromatogram of S. ramosissima pretreated at 180 °C for 30 min with 60% ethanol; the MS2 inserts show the major glycans at m/z 367 and 353. Optional interpretations are shown.

Figure S2: Combined mass spectra and base peak chromatogram of S. ramosissima pretreated at 160 °C for 30 min with 60% ethanol; the MS2 inserts show the major glycans at m/z 501 and 563. Optional interpretations are shown.

Figure S3: Base peak chromatograms of S. ramosissima pretreated at 180 °C for 15 min with 40% and 60% ethanol, as well as at 180 °C for 30 min with 40% ethanol. The samples were analyzed in negative ion mode.

Figure S4: HSQC and quantitative ¹³C NMR spectra of lignin sample 0A4.

Figure S5: HSQC and quantitative ¹³C NMR spectra of lignin sample 0A6.

Figure S6: HSQC and quantitative ¹³C NMR spectra of lignin sample 0B4.

Figure S7: HSQC and quantitative ¹³C NMR spectra of lignin sample OB6.

Figure S8: HSQC and quantitative ¹³C NMR spectra of lignin sample 0C4.

Figure S9: HSQC and quantitative ¹³C NMR spectra of lignin sample 0C6.

Figure S10: HSQC and quantitative ¹³C NMR spectra of lignin sample 1A4.

Figure S11: HSQC and quantitative ¹³C NMR spectra of lignin sample 1A6.

Figure S12: HSQC and quantitative ¹³C NMR spectra of lignin sample 1B4.

Figure S13: HSQC and quantitative ¹³C NMR spectra of lignin sample 1B6.

Figure S14: HSQC and quantitative ¹³C NMR spectra of lignin sample 1C4.

Figure S15: HSQC and quantitative ¹³C NMR spectra of lignin sample 1C6.

Figure S16: HSQC and quantitative ¹³C NMR spectra of lignin sample 1D4.

Figure S17: HSQC and quantitative ¹³C NMR spectra of lignin sample 1D6.

Figure S18: HSQC and quantitative ¹³C NMR spectra of lignin sample 2B4.

Figure S19: HSQC and quantitative ¹³C NMR spectra of lignin sample 2B6.