1	Supplementary information for: Closing the balance - on the role of
2	integrating biorefineries in the future energy system
3	Julia Granacher ^{1*} , Rafael Castro-Amoedo ¹ , Jonas Schnidrig ¹ , François Maréchal ¹
4	10th July 2023

 $_{\rm 5}$ $^{\rm 1}$ Industrial Process and Energy Systems Engineering group, École Polytechnique Fédérale de Lausanne,

- ⁶ Rue de l'Indutrie 17, 1950 Sion, Switzerland;
- ⁷ *julia.granacher@epfl.ch

8 Contents

9	Α	Sup	plementary information on the superstructure model	2
10		A.1	Thermoechnical conversion pathways	2
11		A.2	Fuel cell and co-electrolysis	6
12		A.3	Carbon capture, mineralization, and geological sequestration	6
13		A.4	Residential district	8
14		A.5	Demands of residential district	11
15	в	Sup	plementary information on parameter space and the solution synthesis	12
16		B.1	Mathematical formulation	12
17		B.2	Complexity reduction by means of time series aggregation	14
18		B.3	Parameter sampling and time-dependency	15
19		B.4	Country-specific data	18
20	С	Sup	plementary information on the results	20
21	D	Des	ign references	20

22 A Supplementary information on the superstructure model

In the following, supplementary material on the characteristics of the superstructure is provided. Detailed descriptions of the considered superstructure for combined pulp and fuel production, including the Kraft pulp mill, thermochemical conversion pathways and fuel synthesis models are available in [1], the following provides a summary of the process model parameters.

	Unit	Value	References
Pulp mill			
Pulp production	adt/day	1000	[2]
Black liquor stream	kg/s for 1000 adt pulp/day	14.89	[2]
Bark stream	kW bark/adt pulp	33.5	[3]
Lime kiln and chemical recovery			[4, 5]
T ^{calcination}	°C	900	[4, 5]
T^{product}	$^{\circ}\mathrm{C}$	300	[6]
Reburn specific heat	$\rm J/kg/K$	989	[4]
CO_2 specific heat	J/kg/K	919	[4]
Heat of calcination	kJ/kg	3270	[4]
Inerts specific heat	J/kg/K	1046	[4]
Availability	%	85	[6]
Dust loss	%	5	private data
Solid content	%	73.5	private data
Enthalpy of evaporation	kJ/kg	2439	[4]
Na_2CO_3 in smelt	g/kg dry solids black liquor	278.3	[7]
Shell losses in kiln	% of heat input	15	[8]

Table 1: Kraft pulp mill.

27 A.1 Thermoechnical conversion pathways

	\mathbf{Unit}	Value	Reference
Gasification of black liqu	ıor		
Hydrolysis			[9]
Lignin fraction in organic biomass	wt $\%_{\rm DAF}$	94	
H/C-ratio of lignin	$\mathrm{mol}_{\mathrm{DAF}}$	1.11	
O/C-ratio of lignin	$\mathrm{mol}_{\mathrm{DAF}}$	0.33	
Effective water content	$\mathrm{wt}\%$	93	
Decomposition of carbox	ylic salts		[10], [11]
Reactor yield	-	0.7	
Salt separator			[12]
Recovery of inorganic cooking chemicals	%	100	[13]
Organic losses in salt brine	%	10	[9]
Hydrothermal Gasificati	on		[9]
Reactor temperature	°C	700	[14]
Reactor pressure	bar	250	[15]
Gas expander isentr. efficiency	_	0.8	[15]
Liquid expander isentr. efficiency	_	0.82	[15]
Pressure Swing adsorpti	on (PSA)		[16]
Recovery	%	52	
Purity	$\mathrm{mol}\%$	99.996	
Number of beds	-	4	
Operating pressure	bar	30	[17]
Operating temperature	$^{\circ}\mathrm{C}$	25	[18]
Adsorbent		Activated	carbon/zeolite
Selexol and Pressure Sw	ing adsorption		[9, 17, 19]
Pressure selexol/ PSA	bar	70/ 30	
Temperature selexol/ PSA	$^{\circ}\mathrm{C}$	25	
Recovery H_2 selexol	%	100	
Recovery H_2 PSA	%	80	
Number of beds PSA	-	6	
Purity	mol %	99.997	
COS hydrolysis			[20]
	$^{\circ}\mathrm{C}$	220	

Table 2: Black liquor gasification.

Pressure	bar	dependin	g on AGR unit
Warm-Temperatu	re Syngas Desulfu	rization	[21, 22]
Temperature	$^{\circ}\mathrm{C}$	330	
Pressure	bar	30	

	\mathbf{Unit}	Value	References
Pretreatment			[23-26]
Drying technology	-	Steam/air dryin	g
Moisture content after dry- ing	%	10 (FT) / 20	_
Gasification			[23-26]
Operating conditions (T,p),	agent, steam to	dry biomass ratio	
Directly heated entrained flow (ENF)		1350, 30, oxygen	-steam, 0.6
Directly heated circulating fluidized bed (CFB)	°C, bar, -,-	850,1, oxygen-st	eam, 0.6
Indirectly heated fast in- ternally circulating fluid- ized bed (FICFB)	°C, bar, -,-	850,1, oxygen-st	eam, 0.5
Gas conditioning			[23-26]
Gas cleaning technology	-	cold/hot	
Gas cleaning temperature	$^{\circ}\mathrm{C}$	150 / 850	
Gas cleaning filter pressure drop	mbar	1000	
Gas cleaning flash temper- ature	°C	25	
water gas shift (WGS) temperature	°C	300	
CO_2 removal	-	MEA	[27]
MEA heat requirements	$MJ/kg CO_2$	3.3 (at 150°C, 20	0% recoverable)
MEA electricity require- ments	$kJ/kg CO_2$	25	
Fuel synthesis			[23-26
Operating conditions			
Fischer-Tropsch (FT) syn- thesis pressure, temperat- ure	bar, °C	25,220	
dimethyl ether (DME) syn- thesis pressure, temperat- ure	bar, °C	50,277	
methanol synthesis pres- sure, temperature	bar, °C	85,315	
synthetic natural gas (SNG) synthesis pressure, temperature	bar, °C	5,327	
Technology and catalyst			

Table 3: Termochemical conversion pathways of bark.

FT synthesis DME synthesis Methanol synthesis SNG synthesis	Multi tubular fixed bed reactor, Co/Zr/SiO ₂ Slurry phase reactor , ACZ, HZSM-5 Multi-stage fixed bed reactor , Cu/ZnO/Al2O3 Internally cooled fluidized bed reactor , NiAl2O3		
Upgrading		[23-26]	
FT upgrading DME upgrading Methanol upgrading SNG upgrading	Private data Flash distillatio Flash distillatio Membranes, PS	n	
Fuel specifications		[23-26]	
FT specification, temper- ature, pressure	-, °C , bar	Liquid fuels, 25, 1	
DME specification, tem- perature, pressure	-, °C , bar	99.8 vol%, 25, 1	
Methanol specification, temperature, pressure	-, °C , bar	99.4 vol%, 25, 1	
SNG specification, temper- ature, pressure	-, °C , bar	96 vol%, 25, 50	

28 A.2 Fuel cell and co-electrolysis

Table 4 summarizes the key modeling assumptions for the electrolysis and fuel cell models added to the superstructure.

A.3 Carbon capture, mineralization, and geological sequestration

The models for direct and indirect mineralization are adapted from Ostovari, Sternberg and Bardow [31] and Spínola et al. [32], considering serpentine as possible feedstock to complement residues from the mill. Hereafter, the main process modeling assumptions are summarized; details on the adapted simulation models can be found in [33].

	Unit	Value	Reference
Alkaline electrolysis			
Water in	kg/s	0.080	[28]
Hydrogen out	$\rm kg/s$	0.069	[28]
Oxygen out	$\rm kg/h$	0.170	[28]
Electricity in	kWh	1000	[28]
System efficiency	$\rm kWe/kg~H_2$	52	[28]
Solide oxide Co- electroysis			[29]
Water inlet	kg/s	1.533	
CO_2 input	$\rm kg/s$	2.64	
Syngas produced	$\rm kg/s$	3.011	
Oxygen co-produced	$\rm kg/s$	1.162	
Electricity input	kW	18336	
Solide oxide fuel cell			[30]
F^{\min}	kWe	250	
CH4 in	$\rm kg/s$	1	
CO ₂ out	$\rm kg/s$	2.75	
$\eta^{ m elec}$	%	75	

Table 4: SOEC/SOFC units.

Table 5:	Direct	mineralization.

	Unit	Value	Reference
Grinding and magnet	tic sepa	ration	[31, 34]
Serpentine in	\mathbf{t}	2.3	
Electricity demand	kWh	190	
Magnetic material out	\mathbf{t}	0.2	
Carbonation reactor	and po	stprocessing	[31, 34]
Operating temperature	$^{\circ}\mathrm{C}$	155	
Operating pressure	bar	140	
MgCO ₃ out	\mathbf{t}	1.9	
SiO_2 out	\mathbf{t}	0.9	
Solvent recovery rate	%	90	

	Unit	Value	Reference
Grinding and Phase 1 re	eactor: 1	nineral extraction	[31, 34]
Serpentine in	\mathbf{t}	3.9	
Electricity demand	kWh	63	
Ammonium sulfate makeup	t t	0.3	
Phase 2 reactor: hydrox	[31, 34]		
Operating temperature	°C	50	
Operating pressure	bar	0.5	
Phase 3 reactor: carbon	[31, 34]		
Operating temperature	°C	300	
Operating pressure	bar	25	
MgCO ₃ out	\mathbf{t}	2	

Table 6: Indirect mineralization.

Carbon capture is modeled as a blackbox model of monoethanolamine (MEA) with specific heat and electricity requirements and performance indicators from Heyne and Harvey [27]. For geological sequestration, compression of CO₂ to high-pressure levels for transportation is required. The costs for transport and storage are provided in Table 14. Sequestration and MEA modeling assumptions are summarized in Table 7.

Table 7: Carbon capture and sequestration.

	Unit	Value	Reference
CO ₂ capture technology			[27]
Electricity demand Heat demand, temperature CO ₂ /water removal rate	kJ/kg CO ₂ MJ/kg CO ₂ , °C %	25 3.3, 150^a 95	
Sequestration			
Pressure	bar	60	[35]

 $^{a}20\%$ of heat are recoverable between 90 and 40°C [27].

41 A.4 Residential district

42 Table 8 provides information about the heating technology units and the photovoltaic units. The invest-

⁴³ ment costs for the installation of the district heating network (DHN) are calculated using the approach

⁴⁴ provided in [36] with specific cost data from Belfiore [37], and average heat loss assumptions from Masatin,

Latõšev and Volkova [38]. Two types of district heating networks are considered in the superstructure, a fourth generation, medium-temperature water district heating network, operating at supply and return temperatures of 60 °C and 30 °C, respectively, as well as an innovative fifth-generation district heating network, operating on CO₂ as the working fluid with supply and return temperatures of 15 °C and 13 °C. Both DHN models are adapted from RA Suciu [36].

For providing the heat at the required temperature levels for space heating and domestic hot water 50 demands, heat pumps can be installed at the district level; the models are adapted from RA Suciu [36] 51 and Henchoz et al. [39]. The network is balanced using a central plant that exchanges heat with the 52 pulp mill and can provide additional heat to the DHN by heat pumping (CO₂ network, heat pump 53 model adapted from RA Suciu [36]) or a conventional boiler operation (water network, boiler model 54 adapted from [40]). The residential district model is limited by simplifications regarding temperatures of 55 the demands and their dependency on external conditions. For modeling transportation efficiencies, the 56 assumption in Table 9 are used. Table 10 provides the energy content of the fuels used for the analysis of the transportation demands, further elaborated the main article. 58

	Unit	Value	Reference
District heating network			[30, 39, 41]
Water network, T^{supply} , T^{return}	°C	60, 30	
CO_2 network T^{supply} , T^{return}	$^{\circ}\mathrm{C}$	15, 13	
CO ₂ network pressure	bar	50	
Conventional heating system			
Fuel split in commune heating	%	20/40/40 (gas/oil/other)	[42]
Efficiency gas boiler	%	95	[43]
Photovoltaic			[36, 44]
T ^a	°C	15	
T^{ref}	$^{\circ}\mathrm{C}$	25	
U^{glass}	W/m^2	29.1	
Solar irradiation through PV glass f^{glass}	-	0.9	
Efficiency $\eta^{pv,ref}$	-	0.14	
$\eta^{ m pv,variation}$	-	0.001	
Electricity provision ^{a} , $E^{-,pv}$	kW	1.66	

Table 8: District model characteristics.

 $^a {\rm for}$ reference area of A=100 ${\rm m}^2$ and irradiation I=100 W/m².

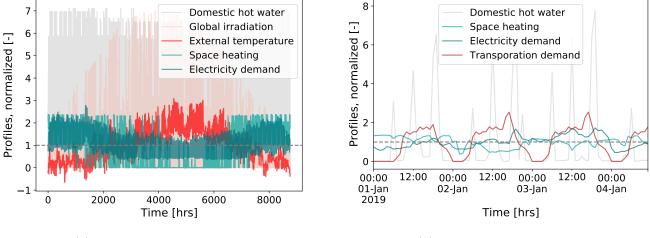
Modelling assumptions	Unit	Value	Reference
in	2019		[45]
Fuel-powered car	MJ/pkm	1.78	
Electric car	$\rm kWh/vkm$	0.17	[46]
Bus	MJ/pkm	1.01	
Freight	MJ/tkm	2.74	
in 2	2030^{a}		
Fuel-powered car	MJ/pkm	0.98	
Electric car	$\rm kWh/vkm$	0.17	[46]
Bus	MJ/pkm	0.56	
Freight	MJ/tkm	1.51	

Table 9: Efficiency of transport mediums.

 a assuming linear efficiency improvement from [47].

Table 10: lower heating value (LH	V) and exergy of products and fuels ^{a} .
-----------------------------------	---

Product	m LHV~[MJ/kg]	Exergy $[MJ/kg]$
FT fuel	44.81	47.94
Methanol	19.83	21.22
DME	28.83	30.84
SNG	47.89	52.12
Hydrogen	119.70	116.50
Pulp	8.15	9.21
Diesel	42.61	NA
Gasoline	43.45	NA
Nat. gas	50.02	NA


 a LHV based on flowsheeting results, exergy calculated with factors provided in [48].

59 A.5 Demands of residential district

The average transportation demand is summarized in Table 11, information on the heating and electricity demands of the district, as well as the weather data is provided in Table 12 for average annual data. In Figure 1, samples of the hourly demand profiles included in the model are presented and normalized on the respective annual averages.

Value	Unit	Commodity	Reference
		2019	[49]
27	%	Gasoline	
71	%	Diesel	
2	%	Electricity and others	
		2030	[50]
16	%	Gasoline	
24	%	Diesel	
60	%	Electricity and others	

Table 11: Shares of passenger vehicles in France for 2019 and 2030.

(a) Hourly profile, one year

(b) Hourly profile, four days

Figure 1: Hourly district demands and weather data profiles for one year, adapted from Middelhauve [51], PM Stadler [52] and Cedric Terrier, Luise Middelhauve and François Maréchal [53].

	Unit	Value	Reference
Size and demands ^{a}			[51, 52]
Reference size district	capita	568	
Scaling factor district	-	$300/150^{b}$	
Annual average demands per	r capita ^a		
Domestic hot water demands	kWh	630	[51, 52]
Space heating demand	kWh	4080	[51, 52]
Electricity demand	kWh	1200	[51, 52]
Personal transport demand	$_{\rm pkm}$	10800	[53]
Freight transport demand	$\rm tkm/yr$	4300	[54]
Public transport demand	$\rm pkm/yr$	4500	[49]
Annual average weather data	\mathbf{a}^{a}		[51, 52]
Global irradiation G ^I	W/m^2	135	
External temperature T ^{ext}	°C	10.4	

Table 12: District demands and weather data.

 a demands and weather data are given as annual average; in the model, data for hourly resolution is included from the respective references, b yields a city size of 170000 and 85000 inhabitants.

⁶⁴ B Supplementary information on parameter space and the solution ⁶⁵ synthesis

B.1 Mathematical formulation and heat exchange characteristics of superstructure optimization problem

The mathematical formulation of the superstructure and optimization in the lower level is adapted from 68 [55, 56], it has also been applied and described in detail in previous studies, such as [1, 57]. The main 69 aspects are summarized hereafter; for more details, the interested reader may consult the cited references. 70 For each unit u in the system, energy and mass flow models are built to describe the conversion in the 71 unit regarding streams, physical properties, mass, and energy balances, and to obtain the characteristics 72 of the interfaces offered for integration with other units. Presuming a set of possible units \mathbf{U} and a set 73 of possible system states T, binary decision variables y_u^{use} and $y_{u,t}^{\text{use}}$ define whether a unit is installed and 74 whether it is used in timestep t. Continuous decision variables f_u^{mult} and $f_{u,t}^{\text{mult}}$ describe the size of the 75 installed unit and the level of usage at which it is operated in each period t. Continuous variables f_u^{mult} are 76 constrained by parameterized upper and lower bounds $F_u^{\min/\max}$. Similarly, the binary decision variables 77 y_u^{use} and $y_{u,t}^{\text{use}}$ are limited by Y_u that determines whether a unit is considered for the generation of results. 78

⁷⁹ In the superstructure model, these variables are related to each other by the set of Equations 1- 3.

$$F_u^{\min} \cdot y_u^{\text{use}} \le \quad f_u^{\text{mult}} \le F_u^{\max} \cdot y_u^{\text{use}} \quad \forall \, u \in \mathbf{U}$$

$$\tag{1}$$

$$F_u^{\min} \cdot y_{u,t}^{\text{use}} \le \quad f_{u,t}^{\text{mult}} \le F_u^{\max} \cdot y_{u,t}^{\text{use}} \quad \forall \, u \in \mathbf{U}, t \in \mathbf{T}$$

$$\tag{2}$$

$$Y_u \ge y_u^{\text{use}} \ge y_{u,t}^{\text{use}} \quad \forall \, u \in \mathbf{U}, t \in \mathbf{T}$$

$$\tag{3}$$

Requirements for each resource are satisfied by internal production and imports (Equation 4). The overall 80 resource balance ensures that import, export, production, and consumption are balanced in the system, as 81 formulated in Equation 5. $\dot{m}_{re,u,t}^+$ and $\dot{m}_{re,u,t}^-$ define the reference mass flow rate of resource re consumed 82 (+) and provided (-), respectively, in unit u at timestep t. For each unit, the mass balance of streams 83 entering and leaving in a timestep t needs to be closed (Equation 6). It needs to be noted that for clarity 84 of the following mass balance formulation, both in and outgoing streams are labeled as resource, with 85 the respective sign (+/-) indicating the direction. In the main text of this thesis, outgoing resources 86 might be referred to as services (se) provided by the mill. More detailed information on the mathematical 87 formulation of the superstructure optimization problem applied in this thesis is provided in [56]. 88

$$\sum_{u} f_{u,t}^{\text{mult}} \cdot \dot{m}_{re,u,t}^{-} + \dot{M}_{re,t}^{-} - \sum_{u} f_{u,t}^{\text{mult}} \cdot \dot{m}_{re,u,t}^{+} \ge 0, \ \forall re \in \mathbf{RE}, \forall t \in \mathbf{T}$$

$$\tag{4}$$

$$\sum_{u} f_{u,t}^{\text{mult}} \cdot \dot{m}_{re,u,t}^{+} + \dot{M}_{re,t}^{+} - \dot{M}_{re,t}^{-} - \sum_{u} f_{u,t}^{\text{mult}} \cdot \dot{m}_{re,u,t}^{-} = 0, \ \forall re \in \mathbf{RE}, \forall t \in \mathbf{T}$$
(5)

$$\sum_{re} f_{u,t}^{\text{mult}} \cdot (\dot{m}_{re,u,t}^+ - \dot{m}_{re,u,t}^-) = 0, \ \forall u \in \mathbf{U}, \forall t \in \mathbf{T}$$
(6)

All units are connected to a utility system, enabling the energy demand and supply profile of each unit 89 to be satisfied, considering their respective temperature-enthalpy profiles. Minimum energy requirements 90 are calculated applying the Pinch analysis and heat recovery approach presented by Marechal and Kal-91 itventzeff [58], based on the work of Linnhoff and Hindmarsh [59]. The list of all stream inlet and outlet 92 temperatures is extracted and ordered to generate the set of temperature intervals **K** of the size N^k [56]. 93 The energy balance is closed in each temperature interval k (Equation 7), and residual heat $(R_{t,k})$ flows 94 from higher to lower temperature levels. Following thermodynamic feasibility, cascaded heat flows are 95 positive, while values in both the first and the last interval are zero (Equation 8). $\dot{q}_{u,t,k}$ represents the 96 reference heat load for unit u in timestep t and temperature interval k [55]. 97

$$\forall k \in \mathbf{K}$$

$$\sum_{u} \dot{q}_{u,t,k} \cdot f_{u,t}^{\text{mult}} + \dot{R}_{t,k+1} - \dot{R}_{t,k} = 0 \quad \forall t \in \mathbf{T}$$

$$\tag{7}$$

$$R_{t,k} \ge 0, \quad R_{t,1} = R_{t,N^k+1} = 0 \quad \forall t \in \mathbf{T}$$
 (8)

In this work, the described mixed integer linear programming (MILP) formulation is further enhanced by simultaneous optimization of water and energy developed by Kermani et al. [60], where the thermal characteristics of water streams are considered for heat integration.

Within the mathematical formulation of the optimization problem in the lower-level framework, the energy and process models relevant to the superstructure are organized in so-called clusters. Clusters are defined as entities that can exchange resources freely among each other, but heat can only be exchanged between the different clusters by means of hot water loops or evaporation and condensation of water in the steam network [2]. Thus, per cluster, the heat cascade is defined, as described in Section B.1. Table 13 displays the organization of process units in different clusters for the analyzed system of combined pulp and fuel production, adapted from [2] and enhanced for considering fuel production.

Table 13: Cluster structure in lower-level optimization problem and included process units.

Cluster digester	Cluster recovery boiler	Cluster fuel production
Washing	Evaporator	Methanol synthesis
Digester	Recovery boiler	DME synthesis
Recausticizer	Biomass boiler	SNG production
		FT fuel synthesis
		Hydrothermal gasification
		Electrolysis
Cluster pulp machine		
Pulp machine		
Bleaching		

108 B.2 Complexity reduction by means of time series aggregation

Time series aggregation (TSA) methods have gained remarkable significance in the modeling and design of a wide range of energy system applications where seasonal, daily, or hourly variations in demand, supply, or parameter spaces are of importance. A comprehensive review is provided by Hoffmann et al. ¹¹² [61], investigating TSA methods for modeling energy systems. Schütz et al. [62] compare aggregation ¹¹³ methods based on their performance; it was found that k-medoids is most reliable when approximating ¹¹⁴ costs of systems by means of TSA, which is also confirmed by Hoffmann et al. [61].

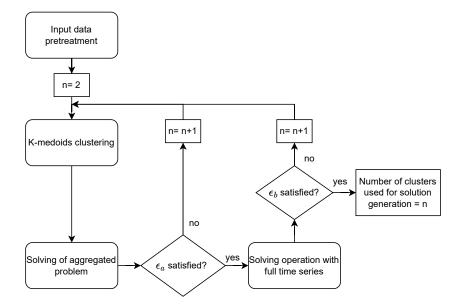


Figure 2: Proposed algorithm for determining the required number of clusters, adapted from Middelhauve et al. [63], Baumgärtner et al. [64] and Bahl et al. [65].

For determining the required number of clusters for analyzing the above-described superstructure ad-115 equately, a systematic method for bounding the error of the aggregation in the objective function is 116 followed, as proposed by Baumgärtner et al. [64] and Bahl et al. [65] and further developed by Middel-117 hauve et al. [63]. In each iteration of the incremental increase of TSA resolution, an upper and lower 118 bound of the objectives are evaluated until a convergence criterion on the gap is met. The lower bound 119 is derived from solving the relaxed problem, whereas the upper bound is defined as the solution of the 120 operating problem in consideration of the complete time series and fixed unit sizes given by the relaxed 121 solution [63–65]. Another convergence criterion is considered, in which the relaxed solution of a proposed 122 number of clusters n is compared to the previous solution for n-1 clusters. Only when a defined con-123 vergence criterion is reached, the operating problem is evaluated for the full-time series, fixing the unit 124 decisions to the findings of the relaxed solution. The procedure for TSA is displayed in Figure 2. 125

¹²⁶ B.3 Parameter sampling and time-dependency

For the consumed resources $re \in RE$ and provided services $se \in SE$, the nominal prices displayed in Table 14 are included. Impact factors are taken from the Ecoinvent database, version 3.6 [66]. As mentioned ¹²⁹ in the main article, samples are drawn twice from the parameter space, once for solution generation and

¹³⁰ once during solution exploration. For sampling when generating and exploring solutions, latin hypercube

¹³¹ sampling (LHS) is applied for all parameters that are not assumed to be time-dependent. Table 15 gives

¹³² an overview of the parameter variations considered in both sampling steps, not including time-dependent parameters such as electricity and fuel prices as well as the impact factors of electricity.

Parameters	Unit	Value	Reference
Interest rate	%	6	
Expected lifetime	years	20	
Wood price	$\rm USD/kg$	0.093	[67]
Pulp price	USD/kg.	0.882	[68]
Electricity price^{a}	USD kWh	0.105	[69]
Natural gas price	$\rm USD/kWh$	0.026	[70]
FT price	$\rm USD/kg$	-1.108	[71]
Methanol price	$\rm USD/kg$	-0.390	[72]
DME price	$\rm USD/kg$	-0.470	[73]
SNG price	$\rm USD/kWh$	-0.075	[74]
H_2 price	$\rm USD/kg$	-2.500	[75]
Quicklime price	$\rm USD/kg$	0.117	[76]
Freshwater price	$\rm USD/kg$	0.0012	[77]
Landfill price	$\rm USD/kg$	0.0013	[78]
CO ₂ sequestration: transport	$\rm USD/kg/250~km$	4	[79]
CO ₂ sequestration: storage	$\rm USD/kg$	11	[80]
Waste heat to district heating	$\rm USD/kWh$	0.075	[81]
Diesel price ^{b}	USD/l	1.439	[82]
Gasoline price^{b}	USD/l	1.515	[82]
Residential heating mix^c	$\rm USD/kWh$	0.0689	[36]

Table 14: Nominal values of key economic parameters considered in solution generation and exploration.

^{*a*} annual mean, variation with electricity price from [83], ^{*b*} annual mean, variation from WTI crude oil price from [84], ^{*c*} current energy mix for heating and cost adapted from [36].

133

For the time-dependency of energy commodities, the historical behavior of natural gas, electricity, and crude oil is considered. In the superstructure model, it is assumed that SNG prices follow trends of natural gas, whereas prices of liquid fuels follow the crude oil prices [86]. Annual means and the references for time-dependent economic data are provided in Table 14.

¹³⁸ For including the time-dependent variation in the superstructure model for solution generation, the avail-

able historical, time-dependent data is varied by two parameters: one that shifts the observed data either

¹⁴⁰ up or down and one that adds noise to the observed data points. The noise added follows a normal

¹⁴¹ distribution with the standard deviation equaling half of the observed standard deviation in the historical

Parameter	Description	$Variation^a$
$p^{\mathrm{un}}(u)$	Normalized variation of investment cost of unit $u \in U^*$, $U^* =$ hydrolysis, salt separator, hydrothermal gasification, sulfur removal, CO ₂ removal	\pm 50
$p^{\mathrm{un}}(u)$	Normalized variation of investment cost of unit $u \in U$, $U =$ electrolysis, co-electrolysis, brine electrolysis, dry biomass pretreatment, gasification, gas conditioning, fuel synthesis reactors (FT, MeOH, DME), SNG synthesis, storage tanks, PV, DHN, mineralization	± 20 [85]
$i^{\mathrm{un}}(r)$	Normalized variation of impact of resource $r \in r$, except for electricity	± 20
$r^{\mathrm{un}}(r)$	Normalized variation of market price of resource $r \in r$, except for electricity, natural gas, SNG and biofuels ^b	± 20

Table 15: Sampling characteristics of parameter space.

^aall parameters sampled with Latin Hypercube Sampling during solution generation and uniformly distributed for solution exploration. Parameters for which time-dependency is acknowledged are not displayed, ^bSNG, natural gas are considered to follow natural gas trends, biofuels are considered to follow crude oil prices.

data. The newly-obtained data is clustered based on the required number of clusters determined by TSA and used as input for each formulated problem solved by the lower-level framework.

To ensure realistic data points are used for result generation, a literature review on correlations between 144 electricity, crude oil, and natural gas prices is conducted. Historically, natural gas and refined petroleum 145 products have been used as close substitutes in power generation and industry, leading to natural gas prices 146 tracking the prices of crude oil [87]. A strategic statistical analysis of the integrated energy market in 147 Europe is addressed by Bencivenga, Sargenti and D'Ecclesia [87], investigating the short-run relationship 148 between oil, natural gas, and electricity in the European energy markets, and identifying possible long-run 149 equilibrium relationships. Correlation analysis presented itself as non-effective due to the non-stationarity 150 of the data, but cointegration was able to detect a relationship between the individual commodities [87]. 151 In 2014, a report requested by the European Parliament was released, investigating the dependencies in 152 the European energy market [88]. Electricity prices tend to vary considerably throughout Europe and 153 generally show a moderate correlation to oil price developments. Different Merit-order curves in different 154 countries lead to different electricity prices, and market integration into a single electricity market in 155 Europe has not yet been fully achieved [88]. Generally, oil product prices such as diesel and gasoline are 156 strongly related to crude oil prices because of the high share of feed-stock costs in their production [88]. 157 The main pathway of high oil prices being translated into gas and electricity prices was originally induced 158 by the still dominant practice of indexing gas prices to oil prices, prevalent in most gas supply contracts 159

in Europe. It was found that even though gas and oil suppliers share common fundamental price drivers, if oil indexation is absent, gas and oil prices are often decoupled [88]. Recently, an increasing share of studies has addressed the inter-dependencies of actors in the energy market, especially encouraged by the increasing price volatility in the energy commodity markets, addressing risk management in the financial sector and the increasing interest in clean energy technology [89–91].

To acknowledge both time-dependent price and impact variation and inter-dependencies between com-165 modity prices in this study, the covariance of electricity prices regarding oil, natural gas prices, and 166 environmental impact are calculated for different temporal resolutions. Between the electricity price and 167 the impact, a positive correlation can be observed, meaning that more expensive electricity can be asso-168 ciated with a higher impact. For the oil and natural gas prices, no strong correlation is observed, even 169 though both are mainly driven by the same components [86]. Reasons for this might be the different 170 time-resolution of the obtained data, as well as the much more dynamic character of the electricity price 171 that makes observations on correlation on an hourly basis challenging. Daily and biannual data reveal 172 higher correlations, but since the data set used in this study is supposed to represent typical hours, this 173 information is not adequate to draw conclusions. 174

Therefore, a ratio-based approach is applied instead of relying on the covariance, where oil and natural gas prices are sampled as previously described. A sample is accepted if the ratios between electricity price, gas price, and oil price are within the observed proportions in the historical data set. Obtained samples are then used to scale the energy prices included in the superstructure model. The price for SNG and natural gas is scaled with the sampled data for natural gas, liquid fuel prices with the crude oil price, and electricity prices with the electricity price sample. The applied ratios for acceptance are displayed in Table 16.

Ratios [%]	Electricity price	Oil price	Natural gas price
Electricity price	1	40-800	90-120
Oil price	-	1	60-115
Natural gas price	-	-	1

Table 16: Accepted ratios for sampling commodity prices, based on historical normalized prices.

182 B.4 Country-specific data

¹⁸³ Country-specific data used to extrapolate the analysis to the European level is provided in Table 17.

Country	M)	2	د)	er .	Inh.	Emi
Unit	kt	EUR/kWh	EUR/l	EUR/l	EUR/kWh	g CO2 _{-eq} /kWh	EUR/kWh	g CO2 _{-eq} /kWh	Mio. capita	Mio. capita Mio t CO2 _{-eq}
Reference	[92]	[02]	[82]	[82]	[69]	[83]	[93]	[93]	[94]	[95]
Belgium	1025	0.02	1.41	1.32	0.08	214.17	0.28	152.16	11.56	106.43
	242	0.03	1.09	1.11	0.09	281.40	0.15	40.94	6.92	49.19
Czechia	557	0.03	1.24	1.24	0.07	763.99	0.19	55.66	10.72	113.34
Germany 2	2326	0.03	1.43	1.27	0.08	431.31	0.18	54.86	83.20	728.74
Estonia 2	222	0.03	1.33	1.32	0.08	561.79	0.18	40.24	1.33	11.56
Spain	1456	0.03	1.29	1.22	0.09	224.69	0.14	37.48	47.37	274.74
France	1626	0.03	1.50	1.44	0.08	69.10	0.15	37.19	68.10	392.96
Croatia	47	0.03	1.34	1.32	0.09	346.72	0.13	34.91	4.04	23.76
Italy §	334	0.03	1.57	1.48	0.09	383.81	0.13	34.91	59.33	381.25
Hungary	28	0.03	1.17	1.23	0.09	375.98	0.24	61.02	9.74	62.82
Netherlands	34	0.02	1.65	1.36	0.07	530.93	0.21	52.74	17.50	164.33
Austria 2	2090	0.03	1.24	1.21	0.08	251.44	0.15	27.92	8.93	73.60
Poland	1623	0.03	1.16	1.17	0.07	209.93	0.17	43.33	38.31	376.04
Portugal 2	2745	0.03	1.49	1.36	0.09	295.27	0.14	35.48	10.31	57.56
Slovenia	92	0.03	1.29	1.25	0.08	342.80	0.25	84.81	2.11	15.85
Slovakia (653	0.03	1.33	1.23	0.09	399.04	0.11	27.6	5.46	37.05
Finland	$11\ 600$	0.04	1.52	1.41	0.06	182.71	0.14	34.49	5.53	47.78
Sweden	12079	0.03	1.48	1.51	0.07	37.29	0.07	45.98	10.38	46.28
Norway 9	983	0.02	1.52	1.42	0.07	63.52	0.11	40.24	5.39	49.27
Switzerland	92	0.08	1.60	1.74	0.07	178.25	0.20	82.01	8.77	43.41
European Union (EU)	N/A	0.03	1.45	1.36	0.08	337.00	0.16	47.54	448.26	3298.24

Table 17: Country-level data to scale results to European level^a.

19

¹⁸⁴ C Supplementary information on the results

185 Choice of residential district size

For determining an adequate size of the district to be considered for integration, the performance of 186 conventional mill operation is analyzed with different district sizes, allowing for no conventional heating 187 of the district. The sensitivity analysis reveals that for the assumed heating demands (Table 8), a city 188 size of 170000 inhabitants could theoretically be heated by the mill, given the mill is operating in a 189 conventional mode without fuel production and other additional process units. For the presented study, 190 a district size of 85000 is chosen, to allow for the analysis of trade-offs between the provision of different 191 energy commodities. However, it needs to be noted that the outcomes of the study, specifically the 192 reported expenses or emission reduction potentials per inhabitant, are largely linked to the assumption 193 of district size. 194

195 System configurations

The results of optimization for Perspective S with a district size of 85000 inhabitants is presented in Table 197 18. The configurations that are selected by the internal optimization and manually are highlighted in 198 grey.

¹⁹⁹ D Design references

²⁰⁰ Icons for describing the superstructure development were extracted from Flaticon: www.flaticon.com.

201 Glossary

- ²⁰² CFB circulating fluidized bed.
- 203 **DHN** district heating network.
- ²⁰⁴ **DME** dimethyl ether.
- 205 **EI** environmental impact.
- 206 **ENF** entrained flow.
- 207 **EU** European Union.

E	$\eta^{ m self, electricity}$	$\eta^{ m self, transport}$	$\eta^{ m self,heating}$	$\eta^{ m self, combined}$	$\mathbf{S1}$	S12	$c^{\mathrm{avoidance}}$	$\Delta \mathrm{EI}/\mathrm{cap}$	$\Delta TOTEX/cap$
	%	%	%	%	%	%	$USD/t CO_2$	kg CO_2	USD
0	41.3	60.1	46.3	51.3	46.4	328.3	9.3	654.4	6.1
-	44.8	9.8	46.9	36.0	18.5	394.9	-52.9	787.3	-41.7
5	44.3	11.1	47.0	36.3	18.7	343.4	-106.2	684.6	-72.7
3 S	43.3	56.9	44.5	49.5	47.3	300.1	-88.0	598.3	-52.6
4	42.6	69.7	44.0	52.9	51.3	318.1	-84.6	634.2	-53.7
5	44.1	91.1	40.7	57.8	59.1	404.2	25.5	805.8	20.5
9	43.0	58.3	44.4	49.8	47.6	355.2	-81.3	708.0	-57.5
-	42.5	69.4	44.0	52.8	51.2	347.1	-71.7	692.0	-49.6
∞	42.4	67.4	44.3	52.4	50.5	289.4	-136.5	576.9	-78.7
6	44.7	50.4	44.0	47.7	45.6	408.6	5.1	814.6	4.1
10	44.8	7.0	46.5	35.0	17.1	444.7	-61.6	886.5	-54.6
11	44.7	9.2	46.7	35.7	18.1	369.0	-68.3	735.7	-50.2
12	44.6	7.0	50.8	37.3	16.7	469.8	-6.2	936.6	-5.8
13	53.8	3.7	40.1	33.7	21.8	496.3	230.4	989.5	227.9
14	82.2	0.2	26.5	29.3	39.1	550.0	920.2	1096.4	1008.9
15	43.5	100.0	40.9	60.5	62.3	434.9	52.6	867.0	45.6
16	43.5	100.0	41.8	60.8	62.7	441.0	72.0	879.2	63.3
17	52.7	100.0	36.9	57.2	69.7	469.0	328.0	935.0	306.7
18	50.5	100.0	38.1	57.9	67.8	464.7	275.9	926.4	255.6
19	82.2	100.0	24.8	47.2	89.3	525.5	1014.7	1047.5	1062.9
20	82.2	100.0	24.8	47.2	89.3	525.5	1024.7	1047.6	1073.5

Table 18: Results of system analysis with district size of 85000 capita.

Icons	Author's website hyper- link
Solar panel icon, electric pole icon, worker icon, boiler icon, paper stack icon, tree icon	Freepik
Bus icon	Hight Quality Icons
Car icon	fjstudio
Electric car icon, truck icon	kosonicon
House icon	Kiranshastry
Building icon, power generation icon	Smashicons
Fuel icon	Those Icons
Factory icon	monkik
People icon	Vitaly Gorbachev
Solar panel icon	Khoirul Huda

Table 19: Author acknowledgments of icons from Flaticon.

- ²⁰⁸ **FICFB** fast internally circulating fluidized bed.
- 209 **FT** Fischer-Tropsch.
- ²¹⁰ **GWP** global warming potential.
- ²¹¹ LHS latin hypercube sampling.
- ²¹² LHV lower heating value.
- 213 MEA monoethanolamine.
- ²¹⁴ MILP mixed integer linear programming.
- ²¹⁵ **SNG** synthetic natural gas.
- ²¹⁶ **TSA** time series aggregation.
- ²¹⁷ WGS water gas shift.

218 **References**

[1] J Granacher, TV Nguyen, R Castro-Amoedo, EC McDonald and F Maréchal. "Enhancing biomass utilization by combined pulp and fuel production". In: *Frontiers in Energy Research* 10 (2022).

[2] M Kermani, ID Kantor, AS Wallerand, J Granacher, AV Ensinas and F Maréchal. "A Holistic
 Methodology for Optimizing Industrial Resource Efficiency". en. In: *Energies* 12.7 (Jan. 2019),
 p. 1315.

- [3] K Pettersson and S Harvey. "Comparison of black liquor gasification with other pulping biorefinery
 concepts Systems analysis of economic performance and CO2 emissions". In: *Energy*. 7th Biennial
 International Workshop "Advances in Energy Studies" 37.1 (Jan. 2012), pp. 136–153.
- [4] TN Adams. Lime kiln principles and operations. en. Tech. rep. Seattle: Tappi, 2007, p. 15.
- [5] DR Sanchez. *Recausticizing Principles and Practice*. en. Tech. rep. Orlando, FL: Tappi, 2000,
 p. 30.
- [6] AdS Castro and LS Figueiredo. "Optimization of lime kilns based on strategies of advanced process
 control case study Cenibra". en. In: 5 th International Colloquium on Eucalyptus Pulp. Bahia,
 Brazil, May 2011, p. 10.
- [7] J Gullichsen and CJ Fogelholm. *Chemical Pulping, Part 2.* en. Papermaking science and technology.
 Fapet Oy, 1999.
- [8] Per Lundqvist. "Mass and energy balances over the lime kiln in a kraft pulp mill". en. PhD thesis.
 2009.
- [9] M Gassner, F Vogel, G Heyen and F Maréchal. "Optimal process design for the polygeneration
 of SNG, power and heat by hydrothermal gasification of waste biomass: Process optimisation for
 selected substrates". en. In: *Energy & Environmental Science* 4.5 (Apr. 2011), pp. 1742–1758.
- In JA Onwudili and PT Williams. "Hydrothermal reactions of sodium formate and sodium acetate
 as model intermediate products of the sodium hydroxide-promoted hydrothermal gasification of
 biomass". en. In: *Green Chemistry* 12.12 (2010). Number: 12, p. 2214.
- [11] M Magdeldin and M Järvinen. "Supercritical water gasification of Kraft black liquor: Process design,
 analysis, pulp mill integration and economic evaluation". en. In: Applied Energy 262 (Mar. 2020),
 p. 114558.

- [12] M Schubert, J Aubert, JB Müller and F Vogel. "Continuous salt precipitation and separation from
 supercritical water. Part 3: Interesting effects in processing type 2 salt mixtures". en. In: *The Journal* of Supercritical Fluids 61 (Jan. 2012), pp. 44–54.
- I3] JS Luterbacher, M Fröling, F Vogel, F Maréchal and JW Tester. "Hydrothermal Gasification of
 Waste Biomass: Process Design and Life Cycle Asessment". In: *Environmental Science & Technology*43.5 (Mar. 2009), pp. 1578–1583.
- ²⁵² [14] M Magdeldin, T Kohl and M Järvinen. "Process modeling, synthesis and thermodynamic evaluation
 ²⁵³ of hydrogen production from hydrothermal processing of lipid extracted algae integrated with a
 ²⁵⁴ downstream reformer conceptual plant". en. In: *Biofuels* 7.2 (Mar. 2016). Number: 2, pp. 97–116.
- [15] A Mian, AV Ensinas and F Marechal. "Multi-objective optimization of SNG production from mi croalgae through hydrothermal gasification". en. In: *Computers & Chemical Engineering* 76 (May 2015), pp. 170–183.
- [16] K Özdenkçi, C De Blasio, G Sarwar, K Melin, J Koskinen and V Alopaeus. "Techno-economic feasibility of supercritical water gasification of black liquor". en. In: *Energy* 189 (Dec. 2019), p. 116284.
- [17] C Cao, L Guo, H Jin, W Cao, Y Jia and X Yao. "System analysis of pulping process coupled with
 supercritical water gasification of black liquor for combined hydrogen, heat and power production".
 In: Energy 132 (May 2017).
- [18] AM Ribeiro, CA Grande, FV Lopes, JM Loureiro and AE Rodrigues. "A parametric study of
 layered bed PSA for hydrogen purification". en. In: *Chemical Engineering Science* 63.21 (Nov.
 2008). Number: 21, pp. 5258–5273.
- [19] M Magdeldin, T Kohl, C De Blasio, M Järvinen, S Won Park and R Giudici. "The BioSCWG Pro ject: Understanding the Trade-Offs in the Process and Thermal Design of Hydrogen and Synthetic
 Natural Gas Production". en. In: *Energies* 9.10 (Oct. 2016). Number: 10, p. 838.
- [20] D Chiche and JM Schweitzer. "Investigation of competitive COS and HCN hydrolysis reactions
 upon an industrial catalyst: Langmuir-Hinshelwood kinetics modeling". en. In: Applied Catalysis B:
 Environmental 205 (May 2017), pp. 189–200.
- [21] Markus Lesemann. *RTI and Eastman Chemical Demonstrate Warm-Temperature Syngas Cleanup Technology.* en. Tech. rep. RTI International, 2013, p. 4.
- [22] DL Denton, R Gupta, M Lesemann and B Turk. *RTI Warm Syngas Cleanup Technology Demon-* stration. en. 2016.

- ²⁷⁶ [23] AD Celebi, S Sharma, AV Ensinas and F Maréchal. "Next generation cogeneration system for
 ²⁷⁷ industry Combined heat and fuel plant using biomass resources". In: *Chemical Engineering Science*²⁷⁸ 204 (Aug. 2019), pp. 59–75.
- ²⁷⁹ [24] E Peduzzi. "Biomass To Liquids". en. PhD thesis. Switzerland: EPFL, 2015.
- [25] M Gassner and F Maréchal. "Thermo-economic process model for thermochemical production of
 Synthetic Natural Gas (SNG) from lignocellulosic biomass". en. In: *Biomass and Bioenergy* 33.11
 (Nov. 2009), pp. 1587–1604.
- [26] L Tock, M Gassner and F Maréchal. "Thermochemical production of liquid fuels from biomass:
 Thermo-economic modeling, process design and process integration analysis". en. In: *Biomass and Bioenergy* 34.12 (2010), pp. 1838–1854.
- [27] S Heyne and S Harvey. "Impact of choice of CO2 separation technology on thermo-economic per formance of Bio-SNG production processes". en. In: International Journal of Energy Research 38.3
 (2014), pp. 299–318.
- [28] G Matute, J Yusta and L Correas. "Techno-economic modelling of water electrolysers in the range
 of several MW to provide grid services while generating hydrogen for different applications: A case
 study in Spain applied to mobility with FCEVs". en. In: International Journal of Hydrogen Energy
 44.33 (July 2019). Number: 33, pp. 17431–17442.
- [29] X Zhang, Y Song, G Wang and X Bao. "Co-electrolysis of CO2 and H2O in high-temperature solid
 oxide electrolysis cells: Recent advance in cathodes". en. In: *Journal of Energy Chemistry*. CO2
 Capture Storage and Utilization 26.5 (Sept. 2017), pp. 839–853.
- [30] R Suciu, P Stadler, A Ashouri and F Maréchal. "Towards energy-autonomous cities using CO2
 networks and Power to Gas storage". In: *Proceedings of ECOS 2016*. Postoroz, Slovenia, 2016.
- [31] H Ostovari, A Sternberg and A Bardow. "Rock 'n' use of CO 2 : carbon footprint of carbon capture
 and utilization by mineralization". en. In: Sustainable Energy & Fuels 4.9 (2020). Publisher: Royal
 Society of Chemistry, pp. 4482–4496.
- [32] AC Spínola, CT Pinheiro, AGM Ferreira and LM Gando-Ferreira. "Mineral carbonation of a pulp
 and paper industry waste for CO2 sequestration". en. In: *Process Safety and Environmental Pro- tection* 148 (Apr. 2021), pp. 968–979.

- [33] R Castro-Amoedo, J Granacher, MA Daher and F Marechal. "On the role of system integration of
 carbon capture and mineralization in achieving net-negative emissions in industrial sectors". en. In:
 Energy & Environmental Science (July 2023). Publisher: The Royal Society of Chemistry.
- J Sipilä, S Teir and R Zevenhoven. Carbon Dioxide Sequestration by Mineral Carbonation: Literature
 Review Update 2005–2007. Tech. rep. Abo Akademi University, Jan. 2008.
- [35] European Technology Platform for Zero Emissions in Fossil Fuel Power Plants. The costs of CO2
 transport: post-demonstration CCS in the EU. en-AU. Tech. rep. Brussels, Belgium, 2011.
- [36] RA Suciu. "Fifth generation district energy systems for low carbon cities". eng. PhD thesis. Lausanne:
 EPFL, 2019.
- ³¹³ [37] F Belfiore. "District heating and cooling systems to integrate renewable energy in urban areas".
 eng. PhD thesis. Lausanne: EPFL, 2021.
- ³¹⁵ [38] V Masatin, E Latõšev and A Volkova. "Evaluation Factor for District Heating Network Heat Loss
 ³¹⁶ with Respect to Network Geometry". en. In: *Energy Procedia*. International Scientific Conference
 ³¹⁷ "Environmental and Climate Technologies", CONECT 2015 95 (Sept. 2016), pp. 279–285.
- ³¹⁸ [39] S Henchoz, C Weber, F Maréchal and D Favrat. "Performance and profitability perspectives of
 a CO2 based district energy network in Geneva's City Centre". en. In: *Energy* 85 (June 2015),
 pp. 221–235.
- [40] P Stadler, L Girardin, A Ashouri and F Maréchal. "Contribution of Model Predictive Control in the
 Integration of Renewable Energy Sources within the Built Environment". In: *Frontiers in Energy Research* 6 (2018).
- L Girardin, F Marechal, M Dubuis, N Calame-Darbellay and D Favrat. "EnerGis: A geographical
 information based system for the evaluation of integrated energy conversion systems in urban areas".
 en. In: *Energy*. ECOS 2008 35.2 (Feb. 2010), pp. 830–840.
- ³²⁷ [42] Federal Statistical Office. *Energy sector.* en. 2022.
- ³²⁸ [43] EK Vakkilainen. "Steam Generation from Biomass, chapter 3: Boiler process". en. In: *Steam Generation from Biomass*. Ed. by EK Vakkilainen. Butterworth-Heinemann, Jan. 2017, pp. 57–86.
- [44] A Ashouri. "Simultaneous Design and Control of Energy Systems". en. Accepted: 2017-10-04T08:17:55Z.
 Doctoral Thesis. ETH Zurich, 2014.
- ³³² [45] T Elghozi. How to calculate the indicators for the transport sector. en. 2021.

- ³³³ [46] L Calearo, M Marinelli and C Ziras. "A review of data sources for electric vehicle integration
 ³³⁴ studies". en. In: *Renewable and Sustainable Energy Reviews* 151 (Nov. 2021), p. 111518.
- International Energy Agency. Vehicle fuel economy in major markets 2005-2019. en. Tech. rep.
 International Energy Agency, 2021.
- J Szargut, DR Morris and FR Steward. Exergy analysis of thermal, chemical, and metallurgical
 processes. English. Berlin, Heidelberg: Springer, 1988.
- ³³⁹ [49] Eurostat. Road traffic by type of vehicle. 2022.
- International Energy Agency. Net Zero by 2050 A Roadmap for the Global Energy Sector. en.
 Tech. rep. International Energy Agency, 2021, p. 224.
- ³⁴² [51] L Middelhauve. "On the role of districts as renewable energy hubs". eng. PhD thesis. Lausanne:
 ³⁴³ EPFL, 2022.
- ³⁴⁴ [52] PM Stadler. "Model-based sizing of building energy systems with renewable sources". eng. PhD
 thesis. Lausanne: EPFL, 2019.
- [53] Cedric Terrier, Luise Middelhauve and François Maréchal. "Potential of electric mobility as service
 to the grid in renewable energy hubs". In: Proceedings of ECOS 2022 The 35th International
 Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy
 Systems. Vol. 35. Copenhagen, Denmark, 2022.
- ³⁵⁰ [54] Eurostat. Territorialised road freight transport, by transport coverage annual data. 2022.
- ³⁵¹ [55] M Gassner and F Maréchal. "Methodology for the optimal thermo-economic, multi-objective design
 of thermochemical fuel production from biomass". In: *Computers & Chemical Engineering*. Selected Papers from the 17th European Symposium on Computer Aided Process Engineering held in
 ³⁵⁴ Bucharest, Romania, May 2007 33.3 (Mar. 2009), pp. 769–781.
- I Kantor, JL Robineau, H Bütün and F Maréchal. "A Mixed-Integer Linear Programming Formulation for Optimizing Multi-Scale Material and Energy Integration". In: *Frontiers in Energy Research*8 (2020), p. 49.
- R Castro-Amoedo, N Morisod, J Granacher and F Maréchal. "The Role of Biowaste: A Multi Objective Optimization Platform for Combined Heat, Power and Fuel". In: Frontiers in Energy
 Research 9 (2021), p. 417.

- ³⁶¹ [58] F Marechal and B Kalitventzeff. "Process integration: Selection of the optimal utility system". In:
 Computers & Chemical Engineering. European Symposium on Computer Aided Process Engineering 8 22 (Mar. 1998), S149–S156.
- ³⁶⁴ [59] B Linnhoff and E Hindmarsh. "The pinch design method for heat exchanger networks". In: *Chemical Engineering Science* 38.5 (1983). 00000, pp. 745–763.
- [60] M Kermani, Z Perin-Levasseur, M Benali, L Savulescu and F Marechal. "A novel MILP approach for
 simultaneous optimization of water and energy: Application to a Canadian softwood Kraft pulping
 mill". en. In: Computers & Chemical Engineering 102 (2017), pp. 238–257.
- [61] M Hoffmann, L Kotzur, D Stolten and M Robinius. "A Review on Time Series Aggregation Methods
 for Energy System Models". en. In: *Energies* 13.3 (Jan. 2020). Number: 3 Publisher: Multidiscip linary Digital Publishing Institute, p. 641.
- ³⁷² [62] T Schütz, MH Schraven, M Fuchs, P Remmen and D Müller. "Comparison of clustering algorithms
 ³⁷³ for the selection of typical demand days for energy system synthesis". en. In: *Renewable Energy* 129
 ³⁷⁴ (Dec. 2018), pp. 570–582.
- ³⁷⁵ [63] L Middelhauve, N Ljubic, J Granacher, L Girardin and F Maréchal. "Data reduction for mixed ³⁷⁶ integer linear programming in complex energy systems". In: *Proceedings of ECOS 2021*. 2021.
- ³⁷⁷ [64] N Baumgärtner, B Bahl, M Hennen and A Bardow. "RiSES3: Rigorous Synthesis of Energy Supply
 ³⁷⁸ and Storage Systems via time-series relaxation and aggregation". en. In: Computers & Chemical
 ³⁷⁹ Engineering 127 (Aug. 2019), pp. 127–139.
- ³⁸⁰ [65] B Bahl, A Kümpel, H Seele, M Lampe and A Bardow. "Time-series aggregation for synthesis
 ³⁸¹ problems by bounding error in the objective function". In: *Energy* 135 (2017), pp. 900–912.
- ³⁸² [66] G Wernet, C Bauer, B Steubing, J Reinhard, E Moreno-Ruiz and B Weidema. "The ecoinvent
 database version 3 (part I): overview and methodology". en. In: *The International Journal of Life Cycle Assessment* 21.9 (Sept. 2016), pp. 1218–1230.
- Food and Agriculture Organization of the United Nations. Forest Products Annual Market Review,
 2018-2019. Tech. rep. ECE/TIM/SP/48. ISBN: 978-92-1-117218-8. United Nations, 2019.
- 187 [68] Index Mundi. Wood Pulp Monthly Price. 2022.
- ³⁸⁸ [69] Eurostat. Electricity prices for non-household consumers bi-annual data. 2022.
- ³⁸⁹ [70] Eurostat. Gas prices for non-household consumers bi-annual data. 2022.

- I Landälv, K Maniatis, Evd Heuvel, S Kalligeros and L Waldheim. Building up the future, cost
 of biofuel : sub group on advanced biofuels : sustainable transport forum. en. Brussels, Belgium:
 Publications Office of the European Union, June 2018.
- ³⁹³ [72] Methanex. Methanex Monthly Average Regional Posted Contract Price History. 2021.
- ³⁹⁴ [73] P Zeman, V Hönig, P Procházka and J Mařík. "Dimethyl ether as a renewable fuel for diesel
 ³⁹⁵ engines". en. In: Agronomy Research 15 (2017).
- J Gorre, F Ortloff and C van Leeuwen. "Production costs for synthetic methane in 2030 and 2050
 of an optimized Power-to-Gas plant with intermediate hydrogen storage". en. In: Applied Energy
 253 (Nov. 2019), p. 113594.
- [75] International Energy Agency. The Future of Hydrogen. en-GB. Technology Report. Paris, France:
 International Energy Agency, June 2019, p. 203.
- ⁴⁰¹ [76] Index Mundi. Lime Prices In The United States, By Type. 2022.
- ⁴⁰² [77] European Association of Public Water Operators. Water affordability. Tech. rep. Brussels: European
 ⁴⁰³ Association of Public Water Operators, 2016.
- ⁴⁰⁴ [78] Valmet. The modern white liquor plant. Tech. rep. Valmet, 2017.
- [79] International Energy Agency. Special Report on Carbon Capture Utilisation and Storage: CCUS in
 clean energy transitions. en. Tech. rep. International Energy Agency, 2020, p. 174.
- ⁴⁰⁷ [80] WJ Schmelz, G Hochman and KG Miller. "Total cost of carbon capture and storage implemented at
 ⁴⁰⁸ a regional scale: northeastern and midwestern United States". In: *Interface Focus* 10.5 (Oct. 2020),
 ⁴⁰⁹ p. 20190065.
- [81] G Gullberg, F Ericson and M Eck. The French District Heating Market Overview, Opportunities
 and Challenges. en. Tech. rep. Swedish Energy Agency, 2019, p. 33.
- ⁴¹² [82] European Commission. Weekly Oil Bulletin. en. 2022.
- [83] Entsoe. European association for the cooperation of transmission system operators for electricity.
 en-us. 2022.
- ⁴¹⁵ [84] Macrotrends LLC. WTI Crude Oil Prices 10 Year Daily Chart MacroTrends. 2023.
- ⁴¹⁶ [85] GA Buchner, AW Zimmermann, AE Hohgräve and R Schomäcker. "Techno-economic Assessment
 ⁴¹⁷ Framework for the Chemical Industry—Based on Technology Readiness Levels". In: *Industrial & Engineering Chemistry Research* 57.25 (June 2018), pp. 8502–8517.

- ⁴¹⁹ [86] US Energy Information Administration. Factors affecting natural gas prices U.S. Energy Inform ⁴²⁰ ation Administration (EIA). 2022.
- ⁴²¹ [87] C Bencivenga, G Sargenti and RL D'Ecclesia. "Energy markets: crucial relationship between prices".
 ⁴²² en. In: *Mathematical and Statistical Methods for Actuarial Sciences and Finance*. Ed. by M Corazza
 ⁴²³ and C Pizzi. Milano: Springer Milan, 2010, pp. 23–32.
- ⁴²⁴ [88] U Albrecht, M Altmann, J Zerhusen, T Rakhsa, P Maio, A Beaudet, P Trucco, C Egenhofer, A
- Behrens, J Teusch, J Wieczorkiewicz, F Genoese and G Maisonnier. The impact of the oil price on
 EU energy prices. Tech. rep. Policy Department European Parliament, 2014.
- ⁴²⁷ [89] T Kanamura. "A model of price correlations between clean energy indices and energy commodities".
 ⁴²⁸ In: Journal of Sustainable Finance & Investment 12.2 (Apr. 2022), pp. 319–359.
- ⁴²⁹ [90] MU Rehman. "Dynamic correlation pattern amongst alternative energy market for diversification
 ⁴³⁰ opportunities". In: *Journal of Economic Structures* 9.1 (Feb. 2020), p. 16.
- ⁴³¹ [91] N Lange. "Correlation in Energy Markets". en. PhD thesis. Frederiksberg: Copenhagen Business
 ⁴³² School, 2017.
- 433 [92] Eurostats. Pulp, paper and paperboard. 2022.
- ⁴³⁴ [93] A Santecchia. "Enabling renewable Europe through optimal design and operation". eng. PhD thesis.
 ⁴³⁵ Lausanne: EPFL, 2022.
- ⁴³⁶ [94] Eurostat. Population and employment. 2023.
- [95] European Environment Agency. *EEA greenhouse gases*. en. Dashboard (Tableau). 2022.