## Supplementary Information

## Electrodeposited CuSbTe Thin Films with Enhanced Thermoelectric Performance

Amit Tanwar, Rajvinder Kaur, N. Padmanathan\*, and Kafil M. Razeeb\*

Micro-Nano Systems Centre, Tyndall National Institute, University College Cork, Dyke Parade, Lee Maltings, Cork T12 R5CP, Ireland

\*Authors to whom correspondence should be addressed: <u>kafil.mahmood@tyndall.ie;</u> <u>padman.narayanasamy@tyndall.ie</u>



Figure S1. EDX spectra of (a)  $Sb_2Te_3$ , (b) Cu0.2SbTe, (c) Cu0.4SbTe, (d) Cu0.6SbTe, (e) Cu0.8SbTe, (f) Cu1.0SbTe.

| Bath                            | Average Film   | Cu (at%) | Sb (at%) | Te (at%) |
|---------------------------------|----------------|----------|----------|----------|
|                                 | thickness (µm) |          |          |          |
|                                 |                | 0        | 36.95    | 63.05    |
|                                 |                | 0        | 37.20    | 62.80    |
| Sb <sub>2</sub> Te <sub>3</sub> | 8.99           | 0        | 36.95    | 63.05    |
|                                 |                | 0        | 36.84    | 63.16    |
|                                 |                | 0        | 36.23    | 63.77    |
|                                 |                | 0        | 36.83    | 63.17    |
|                                 |                | 3.05     | 34.86    | 62.09    |
|                                 |                | 2.71     | 35.23    | 62.06    |
| Cu0.2SbTe                       | 5.80           | 2.75     | 35.28    | 61.96    |
|                                 |                | 2.84     | 35.06    | 62.10    |
|                                 |                | 2.91     | 35.05    | 62.03    |
|                                 |                | 2.85     | 35.10    | 62.05    |
|                                 |                | 5.65     | 33.82    | 60.53    |
|                                 |                | 5.62     | 33.69    | 60.69    |
| Cu0.4SbTe                       | 5.49           | 5.85     | 33.55    | 60.60    |
|                                 |                | 5.76     | 33.73    | 60.51    |
|                                 |                | 5.56     | 33.81    | 60.63    |
|                                 |                | 5.69     | 33.72    | 60.59    |
|                                 |                | 10.34    | 30.68    | 58.98    |
|                                 |                | 9.49     | 31.48    | 59.02    |
| Cu0.6SbTe                       | 4.86           | 9.84     | 30.92    | 59.24    |
|                                 |                | 10.38    | 31.31    | 58.31    |
|                                 |                | 10.27    | 30.52    | 59.21    |
|                                 |                | 10.06    | 30.98    | 58.96    |
|                                 |                | 11.76    | 30.66    | 57.58    |
|                                 |                | 11.31    | 30.60    | 58.08    |
| Cu0.8SbTe                       | 4.56           | 11.32    | 30.54    | 58.14    |
|                                 |                | 11.70    | 30.34    | 57.96    |
|                                 |                | 11.86    | 30.34    | 57.80    |
|                                 |                | 11.59    | 30.50    | 57.91    |
|                                 |                | 15.27    | 28.79    | 55.94    |
|                                 |                | 15.32    | 28.49    | 56.18    |
| Cu1.0SbTe                       | 4.35           | 15.63    | 28.59    | 55.78    |
|                                 |                | 15.34    | 28.41    | 56.25    |
|                                 |                | 15.93    | 28.07    | 56.00    |
|                                 |                | 15.50    | 28.47    | 56.03    |

Table S1. The average film thickness and elemental composition of  $Sb_2Te_3$  and CuSbTe films.



**Figure S2.** (a) HRTEM image Cu0.4SbTe film showing crystalline and amorphous region, (b) Distribution of amorphous and crystalline fraction of CuSbTe, (c) Dislocation in CuSbTe film, (d and e) Amorphous-crystalline features with dislocations at grain boundaries (f) SAED pattern of Cu0.4SbTe in spotted region of the inset.



Figure S3. XPS survey spectra of pure  $Sb_2Te_3$  and CuSbTe films.



**Figure S4.** The core level XPS signals of (a) Sb 3d, (b) Cu2p, (c) and Te 3d for Cu0.4SbTe film for different etching time.