Supporting Information

Low Cost & Quasi Solid State Na₂Mn_{0.5}Ni_{0.5}Fe(CN)₆//Na_xFe₂O₃ Hybrid Na-Ion Batteries for Solar Energy Storage

Pappu Naskar^a, Shubhrajyoti Mondal^a, Biplab Biswas^a, Sourav Laha^{b*} and Anjan Banerjee^{a*}

^a Department of Chemistry, Presidency University-Kolkata, Kolkata-700073, India

^b Department of Chemistry, National Institute of Technology Durgapur, Durgapur-713209, India

Supporting Tables

Table S1. Calculation of Na-ion diffusion coefficient for Mn-PBA and MnNi-PBA.

Parameter / Unit	Mn-PBA	MnNi-PBA
R (J K ⁻¹ mol ⁻¹)	8.314	8.314
Т (К)	303	303
$A (cm^2)$	1	1
n	2	1.5
F (Coulomb mol ⁻¹)	96485	96485
$^{\#}\mathbf{C} \pmod{\mathrm{cm}^{-3}}$	0.0114	0.017
σ (Ohm s ^{-0.5})	180	77
$D (cm^2 s^{-1})$	5.4 × 10 ¹⁶	4.2×10^{-15}

[#]C value is calculated from the crystal structures of the active materials, which are established by Rietveld refinement of PXRD data.

For Mn-PBA

Formula unit per unit cell (Z) = 2

Unit cell volume = 582.563 $Å^3$

Hence, 4 Na⁺ ion present in 582.563 Å³

Therefore, 0.0114 mole Na⁺ ion present in 1 cm⁻³

For MnNi-PBA Formula unit per unit cell (Z) = 2 Unit cell volume = 563.716 Å³ Hence, 4 Na⁺ ion present in 563.716Å³ Therefore, 0.017 mole Na⁺ ion present in 1 cm⁻³

Atom	site	X	У	Z	U _{iso}	Occupancy
Mn	2a	0.5	0.5	0.5	0.004(4)	1.0
Fe	2d	0.5	0	1.0	0.024(5)	0.99(2)
Na	4e	0.240(4)	0.481(10)	0.051(9)	0.066(9)	0.93(1)
N	4e	0.544(4)	0.286(7)	0.811(6)	0.034(6)	1.0
Ν	4e	0.285(4)	0.574(6)	0.484(6)	0.034(6)	1.0
Ν	4e	0.505(6)	0.266(7)	0.306(5)	0.034(6)	1.0
С	4e	0.524(6)	0.181(7)	0.847(7)	0.034(6)	1.0
С	4e	0.188(4)	0.491(10)	0.530(6)	0.034(6)	1.0
С	4e	0.509(6)	0.178(7)	0.199(7)	0.034(6)	1.0
0	4e	0.294(4)	0.181(7)	0.279(7)	0.058(6)	0.84(3)

Table S2. Structural parameters and atomic positions obtained from Rietveld refinement of PXRD data on Mn-PBA.

Space group $P2_1/n$, a = 10.591(1) Å, b = 7.525(2) Å, c = 7.318(1) Å, β = 92.24(2)°

Reliability Factors: $R_p = 6.04\%$, $R_{wp} = 7.48\%$, $\chi^2 = 0.84$

Atom	site	X	у	Z	Uiso	Occupancy
Mn/Ni	2a	0.5	0.5	0.5	0.013(3)	0.5/0.5
Fe	2d	0.5	0	1.0	0.044(5)	0.99(2)
Na	4e	0.292(2)	0.460(4)	0.001(4)	0.076(6)	0.99(3)
N	4e	0.497(8)	0.288(8)	0.748(9)	0.031(4)	1.0
N	4e	0.287(4)	0.538(8)	0.518(8)	0.031(4)	1.0
N	4e	0.504(6)	0.318(7)	0.289(8)	0.031(4)	1.0
С	4e	0.479(8)	0.202(8)	0.815(8)	0.031(4)	1.0
С	4e	0.189(4)	0.452(9)	0.530(8)	0.031(4)	1.0
С	4e	0.467(8)	0.182(8)	0.194(9)	0.031(4)	1.0
0	4e	0.246(7)	0.216(6)	0.284(7)	0.034(11)	1.00(4)

Table S3. Structural parameters and atomic positions obtained from Rietveld refinement of PXRD data on MnNi-PBA.

Space group $P2_{l}/n$, a = 10.413(2) Å, b = 7.470(2) Å, c = 7.253(3) Å, β = 91.13(2)°

Reliability Factors: R_p = 3.13%, R_{wp} = 3.99%, χ^2 = 0.79

Supporting Figures

Fig. S1: Crystal structure of Mn-PBA in monoclinic phase (viewed along the crystallographic c direction).

Fig. S2: EDX analysis of (a) Mn-PBA and (b) MnNi-PBA.

Fig. S3: Crystal structure of Fe_2O_3 in rhombohedral phase (viewed along the crystallographic c direction).

Fig. S4: EDX analysis of (a) Fe₂O₃ and (b) Na_xFe₂O₃.

Fig. S5: (a) CV profiles of Mn-PBA at variable scan rates, (b) peak current *vs*. square root of scan rate profiles of Mn-PBA, (c) CV profiles of MnNi-PBA at variable scan rates, (d) peak current *vs*. square root of scan rate profiles of MnNi-PBA.

Fig. S6: linear relationship between Z' and $\omega^{-1/2}$ at low-frequency region in EIS (ω = angular frequency) for Mn-PBA and MnNi-PBA.

Fig. S7: Na-ion diffusion pathways in the b-c plane as viewed along the crystallographic a-direction: (a) Mn-PBA and (b) MnNi-PBA.

Fig. S8: (a) CV profiles of Fe₂O₃ at variable scan rates, (b) peak current *vs*. scan rate profiles of Fe₂O₃,
(c) CV profiles of Na_xFe₂O₃ at variable scan rates, (d) peak current *vs*. scan rate profiles of Na_xFe₂O₃.

Fig. S9: Na-ion diffusion pathway in $Na_xFe_2O_3$.

Fig. S10: CV profiles at 10 mV s⁻¹ scan rate of symmetric cells with 1 M Na₂SO₄ aqueous electrolyte under (a) flooded, (b) 2 wt% CMC gel, (c) 4 wt% CMC gel and (d) 2 wt% CMC + 2 wt% SiO₂ hybrid gel mediums.

Fig. S11: Current response at various cell potentials of symmetric cells with various electrolyte mediums. Data recorder for this figure from Fig. S8.

Fig. S12: Nyquist plots of the symmetric cells with various electrolyte mediums.