# All-Redox Hybrid Supercapacitors Based on Carbon Modified Stacked Zinc Cobaltite Nanosheets

### Simran Kour, Pawanpreet Kour, A. L. Sharma\*

Department of Physics, Central University of Punjab, Bathinda, Punjab, India-151401 \*Corresponding author: <u>alsharma@cup.edu.in</u>

# Supporting Information

#### 1. Electrode preparation and assembly

For the preparation of the electrodes, the active material was blended with PVDF and carbon black in a ratio of 8:1:1. PVDF acted as a binder and carbon black worked as a conductive element. The three materials were blended properly in a mortar pestle with the help of N-Methyl-2-pyrrolidone (NMP) to get uniform slurry. The slurry was then coated onto the Nickel foam cut in circular form with area of 1 cm<sup>2</sup>. The electrode was then kept for drying overnight at 60 °C in a vacuum oven. The separator (Whatman paper) wetted by 6M KOH electrolyte was sandwiched between the two electrodes and pressed using a hydraulic press to get the desired cell configuration. For symmetric configuration, two similar electrodes were taken. For asymmetric configuration, two different electrodes of different materials were chosen.

## 2. Electrochemical measurements

All the electrochemical measurements have been performed in 2-electrode configuration. The electrochemical investigations (CV and GCD) of the pure  $ZnCo_2O_4$  and the composite  $ZnCo_2O_4/AC$  have been performed in symmetric configuration with a voltage range of 0-1V. For asymmetric configuration, the voltage window was optimized to be 0-1.6V. The EIS analysis was carried out for  $10^5$ -0.1 Hz of frequency at open-circuit voltage. The Formulae used for determining various parameters such as specific capacitance, energy density, and power density has been provided in **Table S2**.

| Parameter           | Formula                                                                    | Terms used                                                                                                                         |
|---------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Bragg's law         | $2d\sin\theta = \lambda$                                                   | 'd' is inter-planar spacing, ' $\theta$ ' is bragg's diffraction angle, $\lambda$ is the wavelength of X-ray                       |
| Interplanar spacing | $d = \frac{1}{\sqrt{\frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}}}$ | ( <i>hkl</i> ) are miller indices of lattice plane,<br>( <i>a</i> , <i>b</i> , <i>c</i> ) are lattice parameters of the<br>crystal |

**Table S1:** Formulae used for finding various structural parameters.

| Crystallite size, <i>D</i><br>(Schherrer equation) | $D = \frac{K.\lambda}{\omega \times \cos\theta}$    | K(~0.94) is a constant, $\lambda$ is the wavelength of X-ray, ' $\omega$ ' is the FWHM, ' $\theta$ ' is bragg's diffraction angle |
|----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Cell volume, V                                     | $V = abc \sin \beta$                                | <i>a</i> , <i>b</i> , and <i>c</i> are lattice parameters of the crystal structure. $'\beta'$ is the lattice angle                |
| Micro strain, <sup>ε</sup>                         | $\varepsilon = \frac{\omega \times \cos \theta}{4}$ | ' $\omega$ ' is the FWHM, ' $\theta$ ' is bragg's diffraction angle                                                               |
| Dislocation density, $\delta$                      | $\delta = \frac{1}{D^2}$                            | ' <i>D</i> ' is the crystallite size                                                                                              |
|                                                    |                                                     |                                                                                                                                   |

| Parameter                                 | Formula _                                          | Terms used                                                                                                              |
|-------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Specific capacitance, $C_{sp}$ (from CV)  | $C_{sp} = \frac{\int IdV}{m \times \nu \times dV}$ | 'I' is the current, $dV$ is the potential window, 'm' is the mass of total active material, ' $\nu$ ' is the scan rate. |
| Specific capacitance, $C_{sp}$ (from GCD) | $C_{sp} = \frac{I \times \Delta t}{m \times dV}$   | 'I' is the current, ' $dt$ ' is the discharging time, ' $m$ ' is the mass of total active material.                     |
| Energy density, $E_d$ (from GCD)          | $E_d = \frac{C_{sp} \times (dV)^2}{7.2}$           | $C_{sp}$ is the specific capacitance, $dV$ is the voltage window.                                                       |
| Power density, $P_d$ (from GCD)           | $P_d = \frac{E_d \times 3600}{\Delta t}$           | ${}^{'E}d$ is the energy density, $\Delta t$ is the discharging time.                                                   |
| Coulombic efficiency, $\eta$              | $\eta = \frac{t_d \times 100}{t_c}$                | $t_d'$ is the discharging time and $t_d'$ is the charging time.                                                         |
| Response time, $\tau$ (from EIS)          | $	au = rac{1}{ u}$                                | 'v' is the frequency corresponding to phase angle $\theta = 45^{\circ}$ .                                               |

 Table S2: Formulae used for electrochemical investigation.



**Fig. S1: (a, b)** CV of ZCO-5 and ZCO-15 at various scan rates; **(c, d)** GCD of ZCO-5 and ZCO-15 at various currents.



**Fig. S2: (a-c)** CV of ZAC-2, ZAC-3, and ZAC-5 at various scan rates; **(d-f)** GCD of ZAC-2, ZAC-3, and ZAC-5 at various currents.



Fig S3: Photographs of illuminated LED panel for (a) SSC and (b) HSC1 at different times.

3. Three-electrode measurements of ZNCO-10

For 3-electrode analysis, the prepared ZNCO-10 electrode was taken as working electrode, Ag/AgCl as a reference electrode, and platinum electrode was used as the counter electrode. The cyclic voltammetry (CV) and constant current charge/discharge (GCD) analysis was performed to investigate the nature of the electrode material. The CV curves were measured at various scan rates (10–100 mV s<sup>-1</sup>), and the GCD performance was tested in the potential window density from 0 to 0.4 V at different currents ranging from 2 to 12 A g<sup>-1</sup>. All these measurements were conducted at room temperature. **Fig. S4(a)** represents the CV curves of the optimized ZNCO-10 with obvious redox peaks showing pseudocapacitive behavior of the electrode material. **Fig. S4(b)** represents the GCD curves for the sample with obvious charge plateaus.



Fig. S4: (a) CV of ZNCO-10 at different scan rates; (b) GCD of ZNCO-10 at different current densities.