Enhancing the catalytic performance of Ni based catalysts in toluene

reforming at low temperature by structuration on SiC extrudates

Lole Jurado^{a ± *}, Michaël Martin Romo y Morales^a, Sébastien Thomas^a and Anne-Cécile Roger^a

^a Institute of Chemistry and Processes for Energy, Environment and Health, ECPM, UMR

7515, University of Strasbourg, 25 rue Becquerel, F-67087 Strasbourg, France

[±] Current affiliation: Instituto de Ciencia de Materiales de Sevilla, Centro Mixto

Universidad de Sevilla-CSIC, Américo Vespucio 49, 41092 Sevilla, Spain.

*Corresponding author: Lole Jurado (<u>dolores.jurado@icmse.csic.es</u>)

Supporting information

Fig 1S. Dip coating procedure of the LSCF precursor solution and impregnation of active phases (Ni and Ru)

Table 1S.	Elemental	composition	of β-SiC-base	d extrudates	(provided by	SICAT)
			-		N J	- /

	Fe	AI	Ca	Na	K	S
Composition (ppm)	3000	1000	400	80	100	50

Fig 2S. Mass uptake and ultrasound test after the coating of (a) LSCF and (b) Ni for several batches.

	Mass uptake LSCF (g/L _{ext})	Mass uptake of Ni (g/L _{ext})	Ni loading (%)
Ni/LSCF/SiC_1	77.9	6.8	8.0
Ni/LSCF/SiC_2	60.0	6.8	10.2
RuNi/LSCF/SiC	68.7	4.0	5.5

Table 2S. Mass uptake and Ni loading of the batches prepared.

Traps ----- Heating line O Valves

Fig 3S. Scheme of the lab scale plant used for toluene reforming reaction (adapted from ref [1])

Fig 4S. Derivative of the TGA curve versus temperature of Ni/LSCFpowder after the pre-treatment under model ex-biomass atmosphere.

Catalysis				
	H ₂ consumption (mmol/g _{catalyst})	Support reducibility (%)		
LSCF _{solution}	4.4	31		
Ni/LSCF _{powder}	5.9	54		
RuNi/LSCF _{powder}	5.4	56		
LSCF/SiC	1.4	10		
Ni/LSCF/SiC	4.6	38		
RuNi/LSCF/SiC	4.9	40		

Table 3S. H₂ consumption and support reducibility of powdered and structured catalysts

Fig 5S. SEM image and EDX analyses of LSCF/SiC

Fig 6S. SEM image and EDX analyses of Ni/LSCF/SiC

Fig 8S. SEM image and EDX analyses of RuNi/LSCF/SiC

The variation of the partial molar flows of each gas compound compared to the inlet one (dashed lines) versus time during toluene reforming for LSCF after pretreatment in H₂ atmosphere (prior reported in ref [2]) and (Ru)Ni/LSCF after pretreatment in model ex-biomass atmosphere is presented in *Fig 7S*. It can be observed that same catalytic activity toward WGS is exhibited for the catalysts pre-treated under model ex-biomass atmosphere and the bare support pre-treated under H₂.

Fig 9S. Partial molar flows at the outlet of the reactor vs time during toluene reforming at 550 °C for 6 h over (Ru)Ni/LSCF catalysts and bare LSCF

Fig 10S. TEM images of fresh (Ru)Ni/LSCF (adapted from ref [2])

Fig 11S. SEM images after toluene reforming reaction at 550 °C for 6 h of *(a)* Ni/LSCF_{powder}; *(b)* RuNi/LSCF_{powder}; *(c)* Ni/LSCF/SiC and *(d)* RuNi/LSCF/SiC

References

- L. Jurado, V. Papaefthimiou, S. Thomas, and A. Roger, "Low temperature toluene and phenol abatement as tar model molecules over Ni-based catalysts: Influence of the support and the synthesis method," *Appl. Catal. B Environ.*, vol. 297, p. 120479, Nov. 2021, doi: 10.1016/j.apcatb.2021.120479.
- [2] L. Jurado, V. Papaefthimiou, S. Thomas, and A.-C. Roger, "Upgrading syngas from wood gasification through steam reforming of tars over highly active Niperovskite catalysts at relatively low temperature," *Appl. Catal. B Environ.*, vol. 299, p. 120687, Dec. 2021, doi: 10.1016/j.apcatb.2021.120687.