Enhancement of formic acid formation by nitrogen-doped graphene oxide nanosheets decorated with Sn nanoparticles in electrochemical CO₂ reduction

Yuma Tano,^a Muhammad Sohail Ahmad ^{b,e*} Yuya Watase,^a Tatsuki Tsugawa ^a, Satoko Takase,^c Yusuke Inomata,^a Kazuto Hatakeyama ^b, Shintaro Ida ^b, Quitain Armando ^d, Youichi Shimizu ^c, and Tetsuya Kida ^{a,b,e*}

^aFaculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860–8555 Japan

^bInstitute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860–8555 Japan

^cDepartment of Applied Chemistry, Graduate School of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu 804-8550, Japan

^dCenter for International Education, Kumamoto University, Kumamoto 860-8555, Japan

^eInternational Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto 860-8555, Japan

Figure S1: FT-IR spectra of HGO and epGO.

Figure S2: Aggregation of Sn on graphene after thermal annealing.

Figure S3: A representative TEM image of Sn on graphene oxide (Sn/rHGO). Hydrothermally prepared SnO_2 was used as the precursor.

Figure S4: A representative TEM image of Sn on graphene oxide (Sn/rHGO). Commercial SnO_2 was used as the precursor.

Figure S5: XRD patterns of GO synthesized by the Hummers' method (HGO), epoxy-controlled GO (epGO), and starting precursor, graphite.

Figure S6: SEM images of (a) Sn/NrHGO and Sn/NrepGO.

Figure S7: HRTEM image of Sn/NrepGO. The high-density bright dots correspond to atomic Sn, which are homogeneously distributed across the entire graphene framework.

Figure S8: Raman spectra of Sn/NrHGO and Sn/NrepGO.

Entry		I _D /I _G
1	Graphene oxide	1.00
2	repGO	1.13
3	rHGO	1.14
4	Sn/NrepGO	1.10
5	Sn/NrHGO	1.11

Table S1: Raman spectrum of graphene oxide and composites. The unit of the spectra is cm⁻¹

Figure S9: Sn 3d XPS deconvoluted spectra of (a) Sn/NrepGO and (b) Sn/NrHGO.

Figure S10: N 1s XPS deconvoluted spectra of (a) Sn/NrepGO and (b) Sn/NrHGO.

Figure S11. Cycle durability of the (a) Sn/NrepGO, (b) Sn/NrHGO electrodes at -1.6 V vs Ag/AgCl (1M KOH under CO_2 flow).

Figure S12. STEM images of the Sn/NrHGO electrode (a) before and (b) after the electrochemical test. The images obtained after a 1 h CA test showed that the Sn particles almost retained their original shape and sizes.

Catalyst	electrolyte	Sn quantity (mg/cm ²)	Applied voltage (vs. RHE)	FE for formic acid	Ref.
Sn/NrepGO	1 М КОН	0.34	-0.57	75	This work
Sn NP/C- GDE	0.5 M KHCO ₃	0.75	-1.5	70	1
CuSn	0.5 M KHCO ₃	N/A	-1.3	57	2
SnO ₂ /carbon black	0.1 M NaHCO ₃	0.212	-1.8	86	3
Sn/rGO_800	0.1 M KHCO ₃	0.510	-0.82	98	4

Table S2. Comparison of the performance of Sn/NrepGO with the reported catalysts.

- (1) A. Del Castillo, M. Alvarez-Guerra, J. Solla-Gullón, A. Sáez, V. Montiel and A. Irabien, J. CO₂ Util., 2017, 18, 222–228.
- (2) M. Watanabe, M. Shibata, A. Kato, M. Azuma and T. Sakata, *J. Electrochem. Soc.*, 1991, **138**, 3382.
- (3) S. Zhang, P. Kang and T. J. Meyer, J. Am. Chem. Soc., 2014, 136, 1734–1737.
- (4) T. Tsujiguchi, Y. Kawabe, S. Jeong, T. Ohto, S. Kukunuri, H. Kuramochi, Y. Takahashi, T. Nishiuchi, H. Masuda, M. Wakisaka, K. Hu, G. Elumalai, J. Fujita and Y. Ito, ACS Catal., 2021, 11, 3310–3318.