Supporting Information

FeCo alloy nanoparticle encapsulated in hollow N-doped carbon as bifunctional electrocatalyst for aqueous zinc-air batteries with low voltage gap

Nan Li[‡], Ting Yang[‡], Hang Lou, Lijuan Huang, Xiaoyu Ma, Hao Jiang, Jiaxiang Xiao,

Chao Xie^{*}, Yahui Yang^{*}

College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China

[‡]These authors contributed equally to this work and should be considered as co-first authors.

*Corresponding author

E-mail address: xc9229@outlook.com (C. Xie); yangyahui2002@sina.com (Y. Yang)

Figure S1. SEM images of (a) ZnFe-ZIF-0.1, (b) $Fe_xCo_y@N-C-0.1$, (c) ZnFe-ZIF-0.5, (d) $Fe_xCo_y@N-C-0.5$, (e) ZnFe-ZIF-0.3, (f) Fe@N-C, (g) ZnCo-ZIF, and (h) Co@N-C.

Figure S2. XPS spectrums of $Fe_xCo_y@N-C-0.3$, Fe@N-C and Co@N-C.

Figure S3. The C 1s XPS spectrums of (a) $Fe_xCo_y@N-C-0.3$, (b) Fe@N-C, and (c) Co@N-C. (d) Comparison of various C contents in $Fe_xCo_y@N-C-0.3$, Fe@N-C, and Co@N-C.

Figure S4. The N 1s XPS spectrums of (a) $Fe_xCo_y@N-C-0.3$, (b) Fe@N-C, and (c) Co@N-C. (d) Comparison of various N contents in $Fe_xCo_y@N-C-0.3$, Fe@N-C, and Co@N-C.

Catalant		The Tafel	
Catalyst	$E_{1/2}$ (V VS. KHE)	slope (mV dec ⁻¹)	
$Fe_xCo_y@N-C-0.1$	0.839	90.9	
Fe _x Co _y @N-C-0.3	0.842	88.1	
$Fe_xCo_y@N-C-0.5$	0.836	94.3	
Fe _@ N-C	0.810	101.5	
Co@N-C	0.803	118.2	
Pt/C	0.809	100.7	

Table S1. Comparison of the ORR performance of as-prepared catalysts.

Catalysts	$E_{1/2}\left(\mathrm{V} ight)$	Eonset (V)	Ref.
Fe _x Co _y @N-C-0.3	0.842	0.98	This work
FeeCoop-NC-800	$E_{2} C_{2} = NC 200 $ (20)		Nano-Micro Lett. 2023, 15,
10,000.2 110 000	0.020	,	26.
NP-CosaNC	0.860	/	Energy Storage Materials
			2023 , 56, 165–173.
CoFe@NC/KB-	0.845	0.95	Chem. Eng. J. 2022 , 427,
800			131614.
CoNi-CoN ₄ -HPC-	0.820	1.03	Nano Energy 2022 , 99,
900			107325.
ZnCo-HNC	0.820	1.05	Small 2022 , 18, e2107141.
Co@NPC/C-	0.790	0.87	Chem. Eng. J. 2022, 432,
MWCNTs			134192.
CoNP@FeNC-	0.850	1.02	Nano-Micro Lett. 2022, 14,
0.05	0.000		162.
CoFe/S-N-C	CoFe/S-N-C 0.855 /		Chem. Eng. J. 2022, 429,
			132174.
Co/CoFe@NC	0.840	0.97	Nano-Micro Lett. 2021, 13,
Corcorcenc			126.
FeCo/N-HCSs	0.791	0.98	Chem. Eng. J. 2021 , 407,
	01771		127961.
Fe ₁ -HNC-500-850	0.842	0.93	Adv. Mater. 2020, 32,
			1906905.
Fe ₃ C-Co/NC	0.830	0.94	Adv. Funct. Mater. 2019, 29,
1030-00/1NC	0.050		1901949

Table S2. Comparison of ORR performance (vs. RHE) of $Fe_xCo_y@N-C-0.3$ with reported M-N-C catalysts in alkaline solution.

Figure S5. LSV curves of ORR obtained before and after CV tests of 2000 cycles for $Fe_xCo_y@N-C-0.3$.

Figure S6. Methanol crossover tolerance test of $Fe_xCo_y@N-C-0.3$ and Pt/C.

Catalyst	<i>E_{j=10}</i> (V vs. RHE)	The Tafel slope (mV dec ⁻¹)
$Fe_xCo_y@N-C-0.1$	1.597	119.1
Fe _x Co _y @N-C-0.3	1.528	87.7
$Fe_xCo_y@N-C-0.5$	1.645	150.0
Fe _@ N-C	1.661	169.3
Co@N-C	1.637 (fast decay)	147.6
RuO ₂	1.607	138.8

Table S3. Comparison of the OER performance of as-prepared catalysts.

Catalyst	<i>E</i> _{<i>j</i>=10} (V)	Tafel slope (mV dec ⁻¹)	Ref.
Fe _x Co _y @N-C-0.3	1.528	87.7	This work
Fe ₈ Co _{0.2} -NC-800	1.630	89.1	Nano-Micro Lett. 2023 , 15, 26.
Co@C-CoNC	1.638	73.0	<i>Nano-Micro Lett.</i> 2023 , 15, 48.
NP-Co _{SA} NC	1.550	/	<i>Energy Storage Materials</i> 2023 , 56, 165–173.
CoNi-CoN4-HPC-900	1.700	153.0	Nano Energy 2022 , 99, 107325.
CoNP@FeNC-0.05	1.630	146.0	Nano-Micro Lett. 2022 , 14, 162
Co@N-HPC-700	1.710	168.5	<i>Chem. Eng. J.</i> 2022 , 433, 134469.
Fe ₃ C-Co/NC	1.570	49.0	<i>Adv. Funct. Mater.</i> 2019 , 29, 1901949.

Table S4. Comparison of OER performance (vs. RHE) of $Fe_xCo_y@N-C-0.3$ with recently reported M-N-C catalysts in alkaline solution.

Figure S7. LSV curves of OER obtained before and after CV tests of 2000 cycles for $Fe_xCo_y@N-C-0.3$.

Figure S8. The CV tests at different scan rates of (a) $Fe_xCo_y@N-C-0.1$, (b) $Fe_xCo_y@N-C-0.3$, (c) $Fe_xCo_y@N-C-0.5$, (d) Fe@N-C, (e) Co@N-C-0.5, and (f) the corresponding C_{dl} value.

Figure S9. The specific activity based on ECSA for (a) OER and (b) HER.

Catabat	ORR	OER	ΔE	Dif
Catalyst	$E_{1/2}(V)$	<i>E</i> _{<i>j</i>=10} (V)	(V)	Kel.
Fe _x Co _y @N-C-0.3	0.842	1.528	0.686	This work
Fe ₈ Co _{0.2} -NC-800	0.820	1.630	0.810	Nano-Micro Lett. 2023, 15, 26.
NP-Co _{sa} NC	0.860	1.550	0.790	Energy Storage Materials 2023 , 56, 165– 173.
CoFe@NC/KB-800	0.845	1.615	0.770	<i>Chem. Eng. J.</i> 2022 , 427, 131614.
CoNi-CoN4-HPC- 900	0.820	1.700	0.880	Nano Energy 2022 , 99, 107325.
CoNP@FeNC-0.05	0.850	1.630	0.780	Nano-Micro Lett. 2022 , 14, 162.
Co/CoFe@NC	0.840	1.540	0.700	Nano-Micro Lett. 2021 , 13, 126.
FeCo/N-HCSs	0.791	1.522	0.731	Chem. Eng. J. 2021 , 407, 127961.
Fe ₃ C-Co/NC	0.830	1.570	0.740	Adv. Funct. Mater. 2019, 29, 1901949

Table S5. Comparison of the reversible potential difference (ΔE) (vs. RHE) of Fe_xCo_y@N-C-0.3 with recently reported M-N-C catalysts in alkaline solution.

		Peak power	The		
Catalyst	OCP(V)	density (mW	voltage	Stability	Ref.
·		cm ⁻²)	gap (V)		
Fe _x Co _y @N-C-0.3	1.45	191.00	0.73	345 h at 5 mA cm ⁻²	This work
Fe ₈ Co _{0.2} -NC-800	~1.43	124.90	/	311 h at 5 mA cm ⁻²	<i>Nano-Micro</i> <i>Lett.</i> 2023 , 15, 26.
Co@C-CoNC	1.53	162.8	~0.85	100 h at 2 mA cm ⁻²	<i>Nano-Micro</i> <i>Lett.</i> 2023 , 15, 48.
NP-Co _{SA} NC	1.42	158.10	0.88	80 h at 10 mA cm ⁻²	Energy Storage Materials 2023 , 56, 165–173
FeCo-DACs/NC	1.50	175.00	~0.91	240 h at 10 mA cm ⁻²	<i>Adv. Mater.</i> 2022 , 34, 2107421.
Co/ZnCo ₂ O ₄ @NC- CNTs	1.47	305.00	0.92	103 h at 20 mA cm ⁻²	Nano Energy 2021 , 82, 105710.
Co/CoFe@NC	1.49	146.60	0.74	~360 h at 20 mA cm ⁻²	<i>Nano-Micro</i> <i>Lett.</i> 2021 , 13, 126.
CoNC-NB2	1.50	246.00	~1.00	140 h at 2 mA cm ⁻²	<i>Small</i> 2020 , 16, 2001171.
H-Co@FeCo/N/C	1.45	125.20	1.00	200 h at 2 mA cm ⁻²	Appl. Catal. B Environ. 2020 , 278, 119259.
CoNi-SAs/NC	1.45	101.40	0.82	\sim 32 h at 5 mA cm ⁻²	<i>Adv. Mater.</i> 2019 , 31, 1905622.
Fe/Co-N/S-Cs	~1.40	102.63	0.69	~ 30 h at 5 mA cm ⁻²	<i>Appl. Catal. B</i> <i>Environ.</i> 2019 , 241, 95- 103.

Table S6. Performances of recently reported aqueous ZABs based on M-N-C catalysts.

Figure S10. The specific capacity curve of the flexible ZABs based on $Fe_xCo_y@N-C-0.3$.

Catalyst	OCP (V)	Stability	Ref.
Fe _x Co _y @N-C-0.3	1.40	50 h at 5 mA cm ⁻²	This work
Fe ₈ Co _{0.2} -NC-800	~1.39	/	<i>Nano-Micro Lett.</i> 2023 , 15, 26.
NP-CosaNC	1.32	5 h at 2 mA cm ⁻²	Energy Storage Materials 2023 , 56, 165– 173.
CoNi-CoN4-HPC-900	1.50	\sim 27 h at 5 mA cm ⁻²	Nano Energy, 2022 , 99, 107325.
CoFe/N-HCSs	1.40	10 h at 1 mA cm ⁻²	Chem. Eng. J. 2021 , 407, 127961.
CoFe@NO-CNT	1.45	56 h at 2 mA cm ⁻²	<i>Electrochimica Acta</i> 2021 , 388, 138587.
Co/CoFe@NC	1.48	~92 h at 5 mA cm ⁻²	Nano-Micro Lett. 2021, 13, 126.
Co/ZnCo ₂ O ₄ @NC- CNTs	1.30	\sim 20 h at 5 mA cm ⁻²	Nano Energy 2021 , 82, 105710.
CoFe/N-HCSs	1.40	10 h at 1 mA cm ⁻²	Chem. Eng. J. 2021 , 407, 127961
Co-NCNT	1.42	30 h at 2 mA cm ⁻²	Carbon Energy 2020 , 2, 461-471.

Table S7. Performances of recently reported flexible ZABs based on M-N-C catalysts.