## Enhanced Oxygen Transfer Rate of Chemical Looping Combustion through Lattice Expansion on CuMn<sub>2</sub>O<sub>4</sub> Oxygen Carrier

Boseok Seo<sup>1</sup>, Jimin Lyu<sup>2</sup>, Namgyu Son<sup>3</sup>, Misook Kang<sup>3</sup>, No-Kuk Park<sup>4</sup>, Seung Jong Lee<sup>5</sup>, Jin Wook Lee<sup>5</sup>, Yongseung Yun<sup>5</sup>, Ho-Jung Ryu<sup>6</sup>, Jeom-In Baek<sup>7</sup>, Dohyung Kang<sup>\*,2</sup>, Minkyu Kim<sup>\*,1</sup>

<sup>1</sup>School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk, 38541, Korea

<sup>2</sup>Department of Future Energy Convergence, Seoul National University of Science and Technology, 232 Gongneung-Ro, Nowon-Gu, Seoul 01811, Republic of Korea

<sup>3</sup>Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea

<sup>4</sup>Institute of Clean Technology, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk, 38541, Korea

<sup>5</sup>Institute for Advanced Engineering, 175-28, Goan-ro 51 beon-gil, Baegam-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do, 17180, Korea

<sup>6</sup>Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea

<sup>7</sup>Korea Electric Power Corporation Research Institute, 105 Munji-ro, Yuseong-gu, Daejeon, 34056, Republic of Korea

\*To whom correspondence should be addressed, dkang@seoultech.ac.kr (D.K) and <u>mk\_kim@ynu.ac.kr</u> (M.K)

## S1. NEB images of CH4 oxidation reaction

The NEB images of initial (IS), transition (TS) and final (FS) states corresponding to the results in figure 2 are provided in the figure S1.





## S2. SEM and BET results

The morphology of  $CuMn_2O_4$  and S- $CuMn_2O_{4-x}$  particles are observed in the scanning electron microscopy (SEM) images presented in Figure S2. The porosity of  $CuMn_2O_4$  and S- $CuMn_2O_{4-x}$  particles measured through N<sub>2</sub> adsorption-desorption isotherms are displayed in Figure S3. There is no discernible difference observed between morphology and porosity of two particle types.



Figure S2. SEM images of  $CuMn_2O_4$  (a, b, c, d) and S- $CuMn_2O_{4-x}$  (e, f, g, h) with different scales.



## S3. Stability analysis for lattice expanded CuMn<sub>2</sub>O<sub>4</sub>

We investigated the impact of lattice expansion on the stability of the  $CuMn_2O_4$  structure by assessing the variation in DFT energy with respect to lattice parameters, as depicted in Figure S4. The DFT energy of the pristine  $CuMn_2O_4$  (corresponding to 0% lattice expansion) was established as the reference energy, set to 0 eV, as this lattice constant represents the most stable configuration for  $CuMn_2O_4$ . In this context, it is important to note that a more positive energy value indicates a lower structural stability. The simulations revealed that, as the lattice undergoes expansion, the DFT energy increases, signifying a decrease in the structural stability. In simpler terms, maintaining the lattice-expanded structure without the presence of substituted larger atom proves to be non-trivial. These results strongly corroborate the experimental observation of residual sulfur in lattice-expanded  $CuMn_2O_4$  (S- $CuMn_2O_{4x}$ ).



**Figure S4**. Energy diagram of relative DFT energy varying with lattice expansion. The DFT energy of the pristine  $CuMn_2O_4$  (corresponding to 0% lattice expansion) was established as the reference energy, set to 0 eV