Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

AgInS₂/CdSe Type-II Core/Shell Quantum Dot-Sensitized Solar Cells with an Efficiency of 11.75% Under 0.1 sun

Siti Utari Rahayu^{1,2}, Yu-Rou Wang¹, Jen-Bin Shi³ and Ming-Way Lee^{1,*}

¹Department of Physics and Institute of Nanoscience, National Chung Hsing University, Taichung, 402, Taiwan

²Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Sumatera

Utara, Medan 20155, Sumatera Utara, Indonesia

³Department of Electronic Engineering, Feng Chia University, Taichung, 40724, Taiwan

^{*} Corresponding author: M. W. Lee, Email: mwl@phys.nchu.edu.tw. Tel: 886-4-22852783. Fax: 886-4-22862534

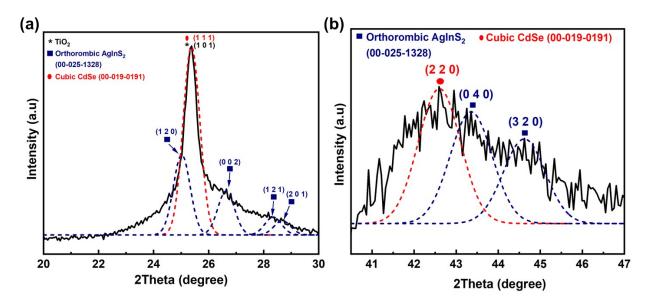


Fig. S1. The deconvoluted spectra analysis of XRD pattern of $TiO_2/AgInS_2/CdSe$ core-shell at the angle of (a) $20^{\circ}-30^{\circ}$ and (b) $40^{\circ}-47^{\circ}$

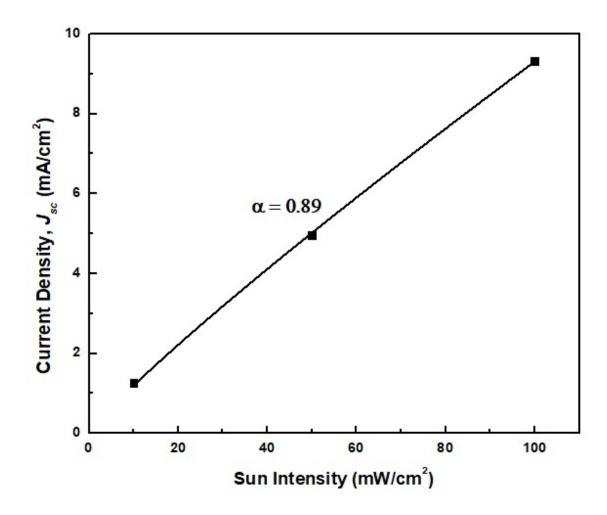


Fig. S2. Sun intensity dependence of the current density, J_{sc} . The data are fitted with the power law equation to determine the degree of linearity of the photocurrent with the sun intensity.