Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2024

Supporting information

2 1. Materials

1

- 3 Ni(NO₃)₂·6H₂O, Fe(NO₃)₃·9H₂O, o-phenylendiamine, polyacrylonitrile,
- 4 salicylaldehyde and RuO₂ were purchased from Aladdin chemical reagent company.
- 5 Nafion (5 wt %) were supplied by Alfa Aesar. All reagents were of analytical grade and
- 6 were used as received.

7 2. Catalyst Characterization

- 8 The X-ray powder diffraction (XRD) patterns of the samples were obtained on a
- 9 Shimadzu XRD-6000 diffractometer with Cu K_{α} radiation (λ =1.54178 Å). Scanning
- 10 electron microscope (SEM) images were collected using a field-emission scanning
- 11 electron microscope (JSM-6701F, FEOL). Transmission electron microscopy (TEM)
- 12 images were taken with a JEM-2010 transmission electron microscope. The nitrogen
- 13 adsorption-desorption characterization was performed with an ASAP2020
- 14 micrometrics instrument at 77 K. Autosorb-iQ2-MP nitrogen adsorption specific
- 15 surface area analyzer was used to measure the specific surface area and pore size
- 16 distribution of samples. The X-ray photoelectron spectroscopy (XPS) was obtained at
- 17 a Thermo Fisher Scientific's K_{α} X-ray photoelectron spectrometer.

18 3. Electrochemical Measurements

19 3.1 For HER and OER

- The electrochemical performance of the product was characterized by an
- 21 electrochemical workstation CHI760E (CH Instrument, Shanghai, China). The
- 22 electrochemical tests of HER and OER was carried out in a three-electrode system using
- 23 Ag/AgCl (in 3.0 M KCl) as the reference electrode, a carbon rod as the counter
- 24 electrode, and a glassy carbon (GC) electrode coated with the products as the working
- 25 electrode. 1.0 M KOH was used as the electrolyte. The first step was the preparation of
- 26 the working electrode. After the catalyst is thoroughly ground, 5 mg of the catalyst was
- 27 dispersed in a mixed solution of water (100 µL), alcohol (400 µL), and Nafion solution
- 28 (5 μL, 10 wt %) to form homogeneous ink via a continuous sonication treatment for 30
- 29 min. The working electrode was prepared by dripping 5.0 µl catalyst ink on the polished
- 30 surface of the electrode, which was air-dried naturally to obtain a loading of 0.70 mg

- 31 cm⁻². For comparison purpose, electrocatalytic activity of commercial Pt/C (for HER
- 32 comparison) and RuO₂ (for OER comparison) were evaluated when the loading was
- 33 0.70 mg cm⁻² under the same conditions. The cyclic voltammetric (CV) pretreatment
- 34 was arranged before other tests to activate the electrocatalysts and achieve a stable state
- of the material. The voltage range of the CV scan was 1.0-2.0 V (vs RHE); the scan rate
- 36 was 50 mV s⁻¹. The linear sweep voltammetric (LSV) was measured at a scan rate of
- 37 10 mV s⁻¹, the overpotential (η) for HER can be calculated from a formula $\eta = E$ (vs
- 38 Ag/AgCl) + 0.059 pH + 0.197 V. The overpotential (η) for OER can be calculated from
- 39 a formula $\eta = E$ (vs Ag/AgCl) + 0.059 pH + 0.197 V 1.23 V. Electrochemical
- 40 impedance spectra (EIS) were recorded at 0.6 V vs Ag/AgCl in the frequency range
- 41 0.1-100 000 Hz with an amplitude of 10 mV.
- 42 3.2 Determination of Electrochemical Capacitance
- The electrochemical surface area (ECSA) was estimated by CV scan in the non-
- 44 faradaic potential range (0.4-0.45 V vs RHE) at different scan rates (5, 10, 15, 20, and
- 45 25 mV s⁻¹). By plotting the current density difference (Δi) between the anodic and
- 46 cathodic current densities against the scan rate, the linear slope (i.e., twice of the double
- 47 layer capacitance (C_{dl})) was used to represent ECSA.
- 48 3.3 Turnover frequency (TOF) calculation

- In order to calculate the turnover frequency (TOF) of the surface active sites, CV
- 50 test was performed with the potential range of -0.2 to 0.6 V (vs. RHE) at a scan rate of
- 51 50 mV s^{-1} to obtain the number of active sites in 1.0 M PBS (pH = 7). With a given
- 52 geometric area A, the number of effective sites n is proportional to the charge Q, and
- 53 the charge Q can be calculated from the obtained CV curve by integration. Therefore,

54
$$I_{cv} = J_{cv} \cdot A$$

$$\frac{U_{cv}}{v}$$
55
$$t = \overline{v}$$

$$Q = \overline{2} \int (I_{cv}t) = \overline{2} \int d(\overline{v}) \int_{cv} = \overline{2} \overline{v} d(U_{cv} \int_{cv} A) = \overline{2v} \int dU_{cv} \int_{cv} = \overline{2v}$$

Because the charge Q of surface active sites (n) can be described by Q = nF,

59 therefore,

$$n = \frac{SA}{2vF}$$

- Where I_{cv} , J_{cv} , U_{cv} are the current, current density, and potential obtained from CV
- 62 curve, v is the scan rate, and S is the integrated area of CV curve. When the number of
- 63 active sites is determined, the TOF (s^{-1}) was calculated with the equation:

64
$$HER: TOF = \frac{I}{2nF} = \frac{I}{2F} \frac{2vF}{SA} = \frac{vI}{SA} = \frac{Jv}{S}$$

$$OER: TOF = \frac{I}{4nF} = \frac{I}{4F} \frac{2vF}{SA} = \frac{vI}{2SA} = \frac{Jv}{2S}$$

- where I is the current (in A) for different samples during the LSV measurements in
- 67 1.0 M KOH, J is the current density in LSV curves, v is the scan rate, F is the Faraday
- 68 constant (in $C \, mol^{-1}$), and n is the number of active sites (in mol) for different samples,
- 69 and S is the integrated areas of CV curves.
- 70 3.4 For overall water splitting
- 71 Preparation of electrode: 5 mg catalyst was ultrasonically dispersed into a mixture
- 72 of 100 μ L ethanol and 400 μ L distilled water until the dispersion was uniform. 350 μ L
- 73 of catalyst was coated to two pieces of processed nickel foam (1×1 cm), respectively,
- 74 and dried naturally at room temperature for testing. For comparison purpose,
- 75 electrocatalytic activity of commercial Pt/C (for cathode) and RuO₂ (for anode) were
- 76 evaluated under the same conditions.

78 4. Results and Discussion

Fig. S1 SEM image and the selected area EDS mapping of the FNNP/NCF-1:3.

81

82

Fig. S2 The high-resolution TEM image of the FNNP/NCF-1:3.

Fig. S3 The full survey XPS spectra of FNNP/NCF-1:3.

88 Fig. S4 (a) CV curves of the catalysts in 1.0 M PBS (pH=7) with a scan rate of 50 mV s⁻¹. TOF of the catalysts for HER (b) and OER (c) in 1.0 M KOH.

Table S1 Summary of Fe/Ni composite materials for HER in 1.0 M KOH.

	Overpotential	Overpotential	
Catalyst	(mV) at 10	(mV) at 100	Refs.
	mA cm ⁻²	mA cm ⁻²	
^a P-NiMo ₄ N ₅ @Ni	178	307	Appl. Catal. B Environ.
			S0926-3373(18)30960-3.
^b NiYCe-MOF/NF	197	387	Nano Lett. 2022, 22,
			7238-7245
° Ni-Mo-Fe (NMF-6)	344	408	Int. J. Hydrogen. Energy.
			46 (2021) 3821-3832.
^d NiFe-LDH/Ni(OH) ₂	157	275	Chem. Eng. J. 419 (2021)
			129608
			Sustain. Energ. Fuels.
^e Ni(OH) ₂ /NF	197	276	2020, 4, 5031–5035
f Cu@Cu ₃ P/NF	218	302	Chem.Eur.J.2019,25,1083
			-1089
g FeNi(BDC)(DMF,F)/NF	171	264	Appl. Catal. B Environ.
			258 (2019) 118023
^h P-rSWCNT	162	275	Appl. Catal. B Environ.
			298 (2021) 120559
i α -CoNiOOH	190	270	Dalton T.49 (2020) 16962-
			16969.
FNN/NCF-1:3	128	352	This work

^{92 &}lt;sup>a</sup> Hydrothermal preparation of nickel foam loaded with nickel-molybdenum nitride after

⁹³ ammonification treatment.

^{94 &}lt;sup>b</sup> Preparation of nickel-yttrium cerium nickel foam loaded MOF by hydrothermal

⁹⁵ method.

^{96 °} Nickel-iron hydroxide loaded on nickel foam, electrodeposited nickel-cobalt metal

⁹⁷ after carbonization.

⁹⁸ d Electrodeposition of nickel-iron hydroxide followed by nickel hydroxide on nickel

⁹⁹ foam.

- 100 ^e Nickel foam heating loaded with nickel hydroxide.
- 101 f Nickel foam water bath heated to grow copper oxide, alkaline environment copper
- oxide reaction to copper hydroxide after phosphorylation.
- 103 g Black foam nickel hydrothermally loaded nickel-iron MOF
- 104 hNaH₂PO₂·H₂O was used as phosphorylated SWCNT as a P source.
- 105 i Preparation of nickel-substituted α -Co(OH) $_{2}$ α -CoNiOOH sheets by co-precipitation.
- 106

109 Fig. S5 The CV curves of (a)FNNP/CNF-1:2, (b) FNNP/CNF-1:4, (c) FNN/CNF-1:3,
110 (d) FNP/CNF-1:3 in non-Faradaic potential range at different scan rates in 1.0 M
111 KOH.

Table S2 Summary of Fe/Ni composite materials for OER in 1.0 M KOH.

	Overpotential	Overpotential	
Catalyst	(mV) at 10 mA	(mV) at 100	Refs.
	cm ⁻²	mA cm ⁻²	
^a CoNiMo-O/H ₂ -450	293	359	Chemelectrochem. 2018, 5, 1-9.
^b H-Ni ₂ Fe ₂ N/Ni ₃ Fe@N- CS	236	351	Appl. Surf. Sci.566 (2021) 150706
° Ni/MoN@NCNT/CC	252	368	J. Alloy. Compd. 934 (2023) 167846.
^d Ni(OH) ₂ @NiS ₂	309	359	Chemelectrochem. 7 (2020) 745-752.
^e NF/PANI/ NiFeeOH	170	340	Int. J. Hydrogen. Energy. 47 (2022) 34025 e34035
^f NiFe NCs	281	305	J. Colloid. Interf. Sci. S0021-9797(18)31294-3
g Fe ₂ O ₃ /Fe _{0.64} Ni _{0.36} @Cs	274	368	Small 2023, 2208276
^h Ni ₃ S ₂ /MIL-53(Fe)	214	251	Chemistryselect. 6 (2021) 1320-1327.
i Ru, Ni–CoP	251	360	Appl. Catal. B Environ. 298 (2021) 120488.
^j Fe ²⁺ -NiFe-LDH-EO6 h@ NF	239	285	ACS Sustain. Chem. Eng. 6 (2018) 11724- 11733.
FNN/NCF-1:3	222	369	This work

^{113 &}lt;sup>a</sup> Hydrothermal loading of cobalt-nickel-molybdenum precursors with nickel foam

¹¹⁴ followed by hydrogen reduction

¹¹⁵ b Ni₃[Fe(CN)₆]₂ PBAs were prepared by hydrothermal methodprecursors, and then

Ni₃[Fe(CN)₆]₂ PBAs precursors were pyrolyzed to synthesize Ni-Fe nitrides and

¹¹⁷ alloys.

^{118 °} Growth of N-doped carbon nanotubes wrapped in Ni/MoN heterostructures on carbon

¹¹⁹ cloth

- 120 d Preparation of Ni(OH)₂@NiS₂ heterostructures by reflux.
- 121 e Electrodeposition of nickel-iron hydroxide after electropolymerization of PANI on
- 122 nickel foam.
- 123 f Room temperature synthesis of nickel-iron nanocube precursors, phosphorylated after
- 124 pyrolysis.
- 125 g Room temperature synthesis of Schiff base solution followed by the addition of nickel-
- iron metal salt solvent thermal reaction to prepare nickel-iron alloy.
- 127 h NiFe foam-loaded Ni₃S₂/ MIL-53(Fe).
- 128 i PAN oxidation decomposition produces pores to fabricate porous ruthenium-nickel
- 129 phosphide nanofibers.
- 130 ^j Growth on nickel foam Fe²⁺ -NiFe-LDH.
- 131

133 Table S3 Summary of Fe/Ni composite materials for overall water splitting in1.0 M134 KOH.

Catalyst	Cell voltage (mV) at 10 mA cm ⁻²	Refs.
^a FeNiS-NF	1.54	Catalysts. 9 (2019) 597.
^b NiFe ₂ O ₄ @N-rGO- CC	1.67	Energ. Fuel. 36 (2022) 4911-4923.
° NiFe-Pi/P	1.57	Appl. Surf. Sci. 598 (2022) 153717.
^d NC _{0.9} F _{0.1} P HHAs	1.57	Electrochim. Acta. 334 (2020) 135633.
^e Fe-CoP UNSs / NF	1.46	J. Mater. Chem. A 7 (2019) 20658-20666.
^f FeNiMoP	1.50	Sustain. Energ. Fuels. 5 (2021) 5789-5797.
g Co/Fe/Ni(OH) ₂	1.59	Appl. Surf. Sci. 528 (2020) 146972.
^h Ni-Fe-P	1.66	Appl. Surf. Sci. 561 (2021) 150080.
i Ni-Fe/S	1.46	Vacuum. 181 (2020) 109661.
FNN/NCF-1:3	1.47	This work

¹³⁵ a Nickel-iron sulfide with nickel foam loading.

¹³⁶ b Carbon cloth-loaded NiFe₂O₄@N-rGO.

^{137 °} Nickel foam loaded nickel-iron phosphide.

¹³⁸ $\,^{d}$ Nickel foam loaded NC $_{0.9}$ $F_{0.1}$ P HHAs.

^{139 &}lt;sup>e</sup> Nickel foam loaded Iron-doped cobalt phosphide ultra-thin nanosheets.

¹⁴⁰ f Trimetallic nickel-iron-molybdenum phosphides grown on nickel foam (NF).

- 141 g Cobalt (Co) and iron (Fe) doped nickel hydroxide (Ni) nanosheets formed on the
- surface of nickel foam.
- 143 h Layered nickel-iron-phosphide (Ni-Fe-P) nanosheets grown on nickel foam (NF).
- 144 i A loaded three-dimensional (3D) iron-doped nickel sulfide was prepared on nickel-
- iron foam.

Fig. S6 (a) SEM image of FNNP/NCF-1:3 after HER cycle, (b) SEM image of 149 FNNP/NCF-1:3 after OER cycle, (c) TEM image of FNNP/NCF-1:3 after HER cycle 150 (d) TEM image of FNNP/NCF-1:3 after OER cycle.

154 Fig. S7 Comparing XRD patterns of the FNNP/NCF-1:3 before and after (a) HER and155 (b) OER long-time tests.

159 Fig. S8 Comparing XPS spectra of (a-b) Ni 2p and (c-d) Fe 2p of patterns of the160 FNNP/NCF-1:3 before and after HER and OER long-time tests.