Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2024 # **Supporting information** #### 2 1. Materials 1 - 3 Ni(NO₃)₂·6H₂O, Fe(NO₃)₃·9H₂O, o-phenylendiamine, polyacrylonitrile, - 4 salicylaldehyde and RuO₂ were purchased from Aladdin chemical reagent company. - 5 Nafion (5 wt %) were supplied by Alfa Aesar. All reagents were of analytical grade and - 6 were used as received. ### 7 2. Catalyst Characterization - 8 The X-ray powder diffraction (XRD) patterns of the samples were obtained on a - 9 Shimadzu XRD-6000 diffractometer with Cu K_{α} radiation (λ =1.54178 Å). Scanning - 10 electron microscope (SEM) images were collected using a field-emission scanning - 11 electron microscope (JSM-6701F, FEOL). Transmission electron microscopy (TEM) - 12 images were taken with a JEM-2010 transmission electron microscope. The nitrogen - 13 adsorption-desorption characterization was performed with an ASAP2020 - 14 micrometrics instrument at 77 K. Autosorb-iQ2-MP nitrogen adsorption specific - 15 surface area analyzer was used to measure the specific surface area and pore size - 16 distribution of samples. The X-ray photoelectron spectroscopy (XPS) was obtained at - 17 a Thermo Fisher Scientific's K_{α} X-ray photoelectron spectrometer. #### 18 3. Electrochemical Measurements #### 19 3.1 For HER and OER - The electrochemical performance of the product was characterized by an - 21 electrochemical workstation CHI760E (CH Instrument, Shanghai, China). The - 22 electrochemical tests of HER and OER was carried out in a three-electrode system using - 23 Ag/AgCl (in 3.0 M KCl) as the reference electrode, a carbon rod as the counter - 24 electrode, and a glassy carbon (GC) electrode coated with the products as the working - 25 electrode. 1.0 M KOH was used as the electrolyte. The first step was the preparation of - 26 the working electrode. After the catalyst is thoroughly ground, 5 mg of the catalyst was - 27 dispersed in a mixed solution of water (100 µL), alcohol (400 µL), and Nafion solution - 28 (5 μL, 10 wt %) to form homogeneous ink via a continuous sonication treatment for 30 - 29 min. The working electrode was prepared by dripping 5.0 µl catalyst ink on the polished - 30 surface of the electrode, which was air-dried naturally to obtain a loading of 0.70 mg - 31 cm⁻². For comparison purpose, electrocatalytic activity of commercial Pt/C (for HER - 32 comparison) and RuO₂ (for OER comparison) were evaluated when the loading was - 33 0.70 mg cm⁻² under the same conditions. The cyclic voltammetric (CV) pretreatment - 34 was arranged before other tests to activate the electrocatalysts and achieve a stable state - of the material. The voltage range of the CV scan was 1.0-2.0 V (vs RHE); the scan rate - 36 was 50 mV s⁻¹. The linear sweep voltammetric (LSV) was measured at a scan rate of - 37 10 mV s⁻¹, the overpotential (η) for HER can be calculated from a formula $\eta = E$ (vs - 38 Ag/AgCl) + 0.059 pH + 0.197 V. The overpotential (η) for OER can be calculated from - 39 a formula $\eta = E$ (vs Ag/AgCl) + 0.059 pH + 0.197 V 1.23 V. Electrochemical - 40 impedance spectra (EIS) were recorded at 0.6 V vs Ag/AgCl in the frequency range - 41 0.1-100 000 Hz with an amplitude of 10 mV. - 42 3.2 Determination of Electrochemical Capacitance - The electrochemical surface area (ECSA) was estimated by CV scan in the non- - 44 faradaic potential range (0.4-0.45 V vs RHE) at different scan rates (5, 10, 15, 20, and - 45 25 mV s⁻¹). By plotting the current density difference (Δi) between the anodic and - 46 cathodic current densities against the scan rate, the linear slope (i.e., twice of the double - 47 layer capacitance (C_{dl})) was used to represent ECSA. - 48 3.3 Turnover frequency (TOF) calculation - In order to calculate the turnover frequency (TOF) of the surface active sites, CV - 50 test was performed with the potential range of -0.2 to 0.6 V (vs. RHE) at a scan rate of - 51 50 mV s^{-1} to obtain the number of active sites in 1.0 M PBS (pH = 7). With a given - 52 geometric area A, the number of effective sites n is proportional to the charge Q, and - 53 the charge Q can be calculated from the obtained CV curve by integration. Therefore, 54 $$I_{cv} = J_{cv} \cdot A$$ $$\frac{U_{cv}}{v}$$ 55 $$t = \overline{v}$$ $$Q = \overline{2} \int (I_{cv}t) = \overline{2} \int d(\overline{v}) \int_{cv} = \overline{2} \overline{v} d(U_{cv} \int_{cv} A) = \overline{2v} \int dU_{cv} \int_{cv} = \overline{2v}$$ Because the charge Q of surface active sites (n) can be described by Q = nF, 59 therefore, $$n = \frac{SA}{2vF}$$ - Where I_{cv} , J_{cv} , U_{cv} are the current, current density, and potential obtained from CV - 62 curve, v is the scan rate, and S is the integrated area of CV curve. When the number of - 63 active sites is determined, the TOF (s^{-1}) was calculated with the equation: 64 $$HER: TOF = \frac{I}{2nF} = \frac{I}{2F} \frac{2vF}{SA} = \frac{vI}{SA} = \frac{Jv}{S}$$ $$OER: TOF = \frac{I}{4nF} = \frac{I}{4F} \frac{2vF}{SA} = \frac{vI}{2SA} = \frac{Jv}{2S}$$ - where I is the current (in A) for different samples during the LSV measurements in - 67 1.0 M KOH, J is the current density in LSV curves, v is the scan rate, F is the Faraday - 68 constant (in $C \, mol^{-1}$), and n is the number of active sites (in mol) for different samples, - 69 and S is the integrated areas of CV curves. - 70 3.4 For overall water splitting - 71 Preparation of electrode: 5 mg catalyst was ultrasonically dispersed into a mixture - 72 of 100 μ L ethanol and 400 μ L distilled water until the dispersion was uniform. 350 μ L - 73 of catalyst was coated to two pieces of processed nickel foam (1×1 cm), respectively, - 74 and dried naturally at room temperature for testing. For comparison purpose, - 75 electrocatalytic activity of commercial Pt/C (for cathode) and RuO₂ (for anode) were - 76 evaluated under the same conditions. ## 78 4. Results and Discussion Fig. S1 SEM image and the selected area EDS mapping of the FNNP/NCF-1:3. 81 82 Fig. S2 The high-resolution TEM image of the FNNP/NCF-1:3. Fig. S3 The full survey XPS spectra of FNNP/NCF-1:3. 88 Fig. S4 (a) CV curves of the catalysts in 1.0 M PBS (pH=7) with a scan rate of 50 mV s⁻¹. TOF of the catalysts for HER (b) and OER (c) in 1.0 M KOH. Table S1 Summary of Fe/Ni composite materials for HER in 1.0 M KOH. | | Overpotential | Overpotential | | |---|---------------------|---------------------|---------------------------| | Catalyst | (mV) at 10 | (mV) at 100 | Refs. | | | mA cm ⁻² | mA cm ⁻² | | | ^a P-NiMo ₄ N ₅ @Ni | 178 | 307 | Appl. Catal. B Environ. | | | | | S0926-3373(18)30960-3. | | ^b NiYCe-MOF/NF | 197 | 387 | Nano Lett. 2022, 22, | | | | | 7238-7245 | | ° Ni-Mo-Fe (NMF-6) | 344 | 408 | Int. J. Hydrogen. Energy. | | | | | 46 (2021) 3821-3832. | | ^d NiFe-LDH/Ni(OH) ₂ | 157 | 275 | Chem. Eng. J. 419 (2021) | | | | | 129608 | | | | | Sustain. Energ. Fuels. | | ^e Ni(OH) ₂ /NF | 197 | 276 | 2020, 4, 5031–5035 | | f Cu@Cu ₃ P/NF | 218 | 302 | Chem.Eur.J.2019,25,1083 | | | | | -1089 | | g FeNi(BDC)(DMF,F)/NF | 171 | 264 | Appl. Catal. B Environ. | | | | | 258 (2019) 118023 | | ^h P-rSWCNT | 162 | 275 | Appl. Catal. B Environ. | | | | | 298 (2021) 120559 | | i α -CoNiOOH | 190 | 270 | Dalton T.49 (2020) 16962- | | | | | 16969. | | FNN/NCF-1:3 | 128 | 352 | This work | ^{92 &}lt;sup>a</sup> Hydrothermal preparation of nickel foam loaded with nickel-molybdenum nitride after ⁹³ ammonification treatment. ^{94 &}lt;sup>b</sup> Preparation of nickel-yttrium cerium nickel foam loaded MOF by hydrothermal ⁹⁵ method. ^{96 °} Nickel-iron hydroxide loaded on nickel foam, electrodeposited nickel-cobalt metal ⁹⁷ after carbonization. ⁹⁸ d Electrodeposition of nickel-iron hydroxide followed by nickel hydroxide on nickel ⁹⁹ foam. - 100 ^e Nickel foam heating loaded with nickel hydroxide. - 101 f Nickel foam water bath heated to grow copper oxide, alkaline environment copper - oxide reaction to copper hydroxide after phosphorylation. - 103 g Black foam nickel hydrothermally loaded nickel-iron MOF - 104 hNaH₂PO₂·H₂O was used as phosphorylated SWCNT as a P source. - 105 i Preparation of nickel-substituted α -Co(OH) $_{2}$ α -CoNiOOH sheets by co-precipitation. - 106 109 Fig. S5 The CV curves of (a)FNNP/CNF-1:2, (b) FNNP/CNF-1:4, (c) FNN/CNF-1:3, 110 (d) FNP/CNF-1:3 in non-Faradaic potential range at different scan rates in 1.0 M 111 KOH. Table S2 Summary of Fe/Ni composite materials for OER in 1.0 M KOH. | | Overpotential | Overpotential | | |--|------------------|---------------------|--| | Catalyst | (mV) at 10 mA | (mV) at 100 | Refs. | | | cm ⁻² | mA cm ⁻² | | | ^a CoNiMo-O/H ₂ -450 | 293 | 359 | Chemelectrochem. 2018, 5, 1-9. | | ^b H-Ni ₂ Fe ₂ N/Ni ₃ Fe@N-
CS | 236 | 351 | Appl. Surf. Sci.566
(2021) 150706 | | ° Ni/MoN@NCNT/CC | 252 | 368 | J. Alloy. Compd. 934
(2023) 167846. | | ^d Ni(OH) ₂ @NiS ₂ | 309 | 359 | Chemelectrochem. 7 (2020) 745-752. | | ^e NF/PANI/ NiFeeOH | 170 | 340 | Int. J. Hydrogen. Energy. 47 (2022) 34025 e34035 | | ^f NiFe NCs | 281 | 305 | J. Colloid. Interf. Sci.
S0021-9797(18)31294-3 | | g Fe ₂ O ₃ /Fe _{0.64} Ni _{0.36} @Cs | 274 | 368 | Small 2023, 2208276 | | ^h Ni ₃ S ₂ /MIL-53(Fe) | 214 | 251 | Chemistryselect. 6 (2021) 1320-1327. | | i Ru, Ni–CoP | 251 | 360 | Appl. Catal. B Environ.
298 (2021) 120488. | | ^j Fe ²⁺ -NiFe-LDH-EO6
h@ NF | 239 | 285 | ACS Sustain. Chem.
Eng. 6 (2018) 11724-
11733. | | FNN/NCF-1:3 | 222 | 369 | This work | ^{113 &}lt;sup>a</sup> Hydrothermal loading of cobalt-nickel-molybdenum precursors with nickel foam ¹¹⁴ followed by hydrogen reduction ¹¹⁵ b Ni₃[Fe(CN)₆]₂ PBAs were prepared by hydrothermal methodprecursors, and then Ni₃[Fe(CN)₆]₂ PBAs precursors were pyrolyzed to synthesize Ni-Fe nitrides and ¹¹⁷ alloys. ^{118 °} Growth of N-doped carbon nanotubes wrapped in Ni/MoN heterostructures on carbon ¹¹⁹ cloth - 120 d Preparation of Ni(OH)₂@NiS₂ heterostructures by reflux. - 121 e Electrodeposition of nickel-iron hydroxide after electropolymerization of PANI on - 122 nickel foam. - 123 f Room temperature synthesis of nickel-iron nanocube precursors, phosphorylated after - 124 pyrolysis. - 125 g Room temperature synthesis of Schiff base solution followed by the addition of nickel- - iron metal salt solvent thermal reaction to prepare nickel-iron alloy. - 127 h NiFe foam-loaded Ni₃S₂/ MIL-53(Fe). - 128 i PAN oxidation decomposition produces pores to fabricate porous ruthenium-nickel - 129 phosphide nanofibers. - 130 ^j Growth on nickel foam Fe²⁺ -NiFe-LDH. - 131 133 Table S3 Summary of Fe/Ni composite materials for overall water splitting in1.0 M134 KOH. | Catalyst | Cell voltage (mV) at 10 mA cm ⁻² | Refs. | |---|---|--| | ^a FeNiS-NF | 1.54 | Catalysts. 9 (2019) 597. | | ^b NiFe ₂ O ₄ @N-rGO-
CC | 1.67 | Energ. Fuel. 36 (2022) 4911-4923. | | ° NiFe-Pi/P | 1.57 | Appl. Surf. Sci. 598 (2022)
153717. | | ^d NC _{0.9} F _{0.1} P HHAs | 1.57 | Electrochim. Acta. 334 (2020)
135633. | | ^e Fe-CoP UNSs / NF | 1.46 | J. Mater. Chem. A 7 (2019)
20658-20666. | | ^f FeNiMoP | 1.50 | Sustain. Energ. Fuels. 5 (2021) 5789-5797. | | g Co/Fe/Ni(OH) ₂ | 1.59 | Appl. Surf. Sci. 528 (2020)
146972. | | ^h Ni-Fe-P | 1.66 | Appl. Surf. Sci. 561 (2021)
150080. | | i Ni-Fe/S | 1.46 | Vacuum. 181 (2020) 109661. | | FNN/NCF-1:3 | 1.47 | This work | ¹³⁵ a Nickel-iron sulfide with nickel foam loading. ¹³⁶ b Carbon cloth-loaded NiFe₂O₄@N-rGO. ^{137 °} Nickel foam loaded nickel-iron phosphide. ¹³⁸ $\,^{d}$ Nickel foam loaded NC $_{0.9}$ $F_{0.1}$ P HHAs. ^{139 &}lt;sup>e</sup> Nickel foam loaded Iron-doped cobalt phosphide ultra-thin nanosheets. ¹⁴⁰ f Trimetallic nickel-iron-molybdenum phosphides grown on nickel foam (NF). - 141 g Cobalt (Co) and iron (Fe) doped nickel hydroxide (Ni) nanosheets formed on the - surface of nickel foam. - 143 h Layered nickel-iron-phosphide (Ni-Fe-P) nanosheets grown on nickel foam (NF). - 144 i A loaded three-dimensional (3D) iron-doped nickel sulfide was prepared on nickel- - iron foam. **Fig. S6** (a) SEM image of FNNP/NCF-1:3 after HER cycle, (b) SEM image of 149 FNNP/NCF-1:3 after OER cycle, (c) TEM image of FNNP/NCF-1:3 after HER cycle 150 (d) TEM image of FNNP/NCF-1:3 after OER cycle. 154 Fig. S7 Comparing XRD patterns of the FNNP/NCF-1:3 before and after (a) HER and155 (b) OER long-time tests. 159 Fig. S8 Comparing XPS spectra of (a-b) Ni 2p and (c-d) Fe 2p of patterns of the160 FNNP/NCF-1:3 before and after HER and OER long-time tests.