Supporting Information

An Efficient Particulate Photocatalyst for Overall Water Splitting Based on Scandium and Magnesium Co-Doped Strontium Titanate

Shigeru Ikeda,^{*a,b} Riku Okamoto,^a Akira Kimura,^a Yuhi Nakayasu,^c Akira Yamakata,^c Ryota Tomizawa,^d Taizo Masuda,^d Koichiro Nakatani^d

^a Department of Chemistry, Konan University, 9-1 Okamoto, Higashinada-ku, Kobe, Hyogo 658-8501, Japan.

^b Institute for Energy Conversion Materials, Konan University, 9-1 Okamoto, Higashinada-ku, Kobe, Hyogo 658-8501, Japan.

^c Graduate School of Natural Science & Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530 Japan.

^d Carbon Neutral Development Division, Toyota Motor Corporation, 1200 Mishuku, Susono, Shizuoka 410-1193, Japan.

Fig. S1 (a) an XRD pattern and an SEM image of the commercial $SrTiO_3$ powder supplied from FUJIFILM Wako.

Fig. S2 XRD patterns of (a) SrTiO₃:Al, (b) SrTiO₃:Sc, (c) SrTiO₃:Mg, (d) SrTiO₃:Al,Sc, (e) SrTiO₃:Al,Mg, and (f) SrTiO₃:Sc,Mg samples. An XRD profile of SrTiO₃ (ICSD 56092) obtained by VESTA software¹ was also shown as a reference. Asterisks (*) denote reflections of SrCO₃ derived from the SrCl₂ flux.

Fig. S3 Particle-size distributions of (a) $SrTiO_3:Al$, (b) $SrTiO_3:Sc$, (c) $SrTiO_3:Mg$, (d) $SrTiO_3:Al,Sc$, (e) $SrTiO_3:Al,Mg$, and (f) $SrTiO_3:Sc,Mg$ samples. Insets of these plots indicate average diameters ($D_{avg}s$) and their standard deviations (SDs) in a nanometer unit.

Fig. S4 A photoemission yield $(Y^{1/3})$ -energy (*hv*) plot of the SrTiO₃:Sc,Mg sample.

Fig. S5 Transmittance depth profiles of an SrTiO₃ bulk crystal at various photon energies obtained from photoabsorption coefficients (α s) reported by Zollner et al.² (a) 3.2 eV (365 nm), (b) 3.4 eV (344 nm), (c) 3.8 eV (326 nm), and (d) 4.0 eV (310 nm).

Table S1 Ratios of intensities of the photoabsorption at 10,000 cm⁻¹ measured in O₂ and H₂O after a 100- μ s delay relative to that measured in N₂

Sample	$I_{\rm O2}/I_{\rm N2}{}^{\rm a)}$	$I_{\rm O2}/I_{\rm H2O}{}^{\rm b)}$
SrTiO ₃ :Sc,Mg	0.76	1.76
SrTiO ₃ :Al	0.81	1.36

^{a)} Ratio of the photoabsorption intensity at 10,000 cm⁻¹ measured in O_2 after the 100 µs delay relative to that measured in N_2 .

^{b)} Ratio of the photoabsorption intensity at 10,000 cm⁻¹ measured in H₂O after the 100 μ s delay relative to that measured in N₂.

References

1 K. Momma, F. Izumi, J. Appl. Crystallogr. 2011, 44, 1272.

2 S. Zollner, A. A. Demkov, R. Liu, P. L. Fejes, R. B. Gregory, P. Alluri, J. Vac. Sci. Technol. B 2000, 18, 2242.