Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Clean hydrogen production from ammonia decomposition over zeolite 13X-supported Ni catalysts

Jiyu Kim,^{ab} Kyoung Deok Kim,^{ac} Unho Jung,^{a*} Yongha Park,^a Ki Bong Lee,^{b*} and Kee Young Koo^{ad*}

^aHydrogen Research Department, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea

^bDepartment of Chemical & Biological Engineering, Korea University, 145 Anam-dong, Seongbuk-Gu, Seoul 02841, Republic of Korea

^cGraduate School of Energy Science and Technology, Chungnam National University(CNU), 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea

^dAdvanced Energy and System Engineering, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea

*Corresponding Authors.

E-mail addresses: kykoo@kier.re.kr (K. Y. K.); uhjung@kier.re.kr (U. J.); kibonglee@korea.ac.kr (K. B. L.)

Figure S1. Pore size distribution of Ni/zeolite 13X catalysts.

Figure S2. XRD patterns of (a) fresh and reduced (700 °C, 10% H_2/N_2) zeolite 13X and (b) Ni/13X-DP according to reduction temperature (400 – 700 °C).

Figure S3. TEM elemental mapping image of recued (a) Ni/13X-IE, (b) Ni/13X-DP, and (c) Ni/13X-IMP.

Figure S4. Cross-sectional TEM elemental mapping image of (a) calcined and (b) reduced Ni/13X-DP with ultra-microtome pretreatment.

Figure S5. (a) NH₃- TPD-MS and (b) NH₃-TPSR-MS profiles of Ni/zeolite 13X catalysts with different preparation method.

Ni/zeolite 13X - catalyst	Peak a		Peak β		Peak Y	
	Temp. (°C)	Fraction (%)	Temp. (°C)	Fraction (%)	Temp. (°C)	Fraction (%)
Ni/13X-IE	381	0.99	541	36.97	651	62.04
Ni/13X-DP	381	17.84	545	70.72	709	11.44
Ni/13X-IMP	378	71.17	589	28.83	-	-

Table S1. H_2 reduction temperature peak of Ni/zeolite 13X catalysts

Number	Catalyst	Ni loading (wt%)	Method	NH3 Conversion (%)	H_2 Formation rate (mmol g_{cat}^{-1} min ⁻¹)	Ref.
1	Ni/MRM- 600	15.0	Precipitation	55.0	18.4	1
2	Ni/SiO ₂	10.0	Wet impregnation	36.4	11.4	2
3	S60/1.0Mg/ 10Ni/USY	10	Surfactant- assisted melt infiltration	52	-	3
4	Ni/rGO	25	Sonication	74.2	24.8	4
5	Ni/AC	10	Sonication	40.9	13.7	4
6	Ni/BN	8.9	Sol-gel method	48.1	16.1	5
7	Ni/SiO ₂ - AEH	10.0	ammonia evaporation- hydrothermal	50	16	6
8	Ni/13X-DP	14.8	Deposition Precipitation	68.3	22.9	This work

Table S2. Comparison of catalytic performance of Ni-based catalysts for NH₃ decomposition at 600 °C and WHSV of 30000 mL g_{cat}^{-1} h⁻¹.

References

1. J.-L. Cao, Z.-L. Yan, Q.-F. Deng, Z.-Y. Yuan, Y. Wang, G. Sun, X.-D. Wang, B. Hari and Z.-Y. Zhang, *Catal. Sci. Technol.*, 2014, 4, 361.

2. T.V Choudhary, C. Sivadinarayana and D. W. Goodman, Catal. Lett., 2001, 72, 197.

3. E. H. Cho, N. Jeon, B. S. Yoon, S. Kim, Y. Yun and C. H. Ko, Appl. Surf. Sci., 2023, 608, 155244.

4. T. Meng, Q.-Q. Xu, Y.-T. Li, J.-L. Chang, T.-Z. Ren and Z.-Y. Yuan, *J. Ind. Eng. Chem.*, 2015, **32**, 373.

5. C. Zhou, K. Wu, H. Huang, C.-F. Cao, Y. Luo, C.-Q. Chen, ...L. Lin, C. Au and L. Jiang, L. ACS Catal., 2021, **11**, 10345.

6. H. Ren, J. Cheng, H. Fang, F. Zhong, C. Chen, L. Lin and X. Lin, *Appl. Catal. A*, 2023, **664**, 119344.