Supplementary Information

BiFeO₃ perovskite based all oxide ambient stable spectrally selective absorber coatings for solar thermal application

Aryaveer Singh, Chandra Prakash, Priyambada Sahoo, Ambesh Dixit*

Advanced Materials and Device (A-MAD) Laboratory, Department of Physics, Indian Institute of Technology, Jodhpur, Rajasthan, India (342030)

* ambesh@iitj.ac.in

Table S1. Photothermal conversion efficiency (η) values of BFO/Al, BFO/SS, and BFO/Cu for different layer SSACs.

No. of layers	BFO/Al	BFO/SS	BFO/Cu
4	0.34	0.58	0.83
8	0.46	0.62	0.83
12	0.52	0.65	0.83
16	0.54	0.67	0.83

Figure S1. IR active modes in reflectance vs wavelength plot of BFO/Cu SSACs.

Figure S2. Low-resolution FE-SEM images of (a) 4-layer BFO/Cu, (b) 8-layer BFO/Cu, and (c) 16-layer BFO/Cu SSACs.

Figure S3. Cross-sectional FE-SEM images for (a) 4-layers BFO/Cu, (b) 8-layers BFO/Cu, (c) 12-layers BFO/Cu, and (d) 16-layers BFO/Cu SSACs.

Figure S4. The tabular image shows the Stoichiometric ratio of the Bi, Fe, O and Cu in the BFO/Cu SSACs, and the left image shows its elemental mapping.