Electronic Supplementary Information for

A self-phosphorized carbon-based monolithic chainmail electrode for high-current-density and durable alkaline water splitting

Shixiong Min,*a,b,c Zhe Meng,^{a,b,c} Yaoyao Zhao,^{a,b,c} Wenjing Li,^{a,b,c} Zhengguo Zhang,^{a,b,c}and Fang Wang^{a,b,c}

^a School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China. E-mail: <u>sxmin@nun.edu.cn</u>

^b Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, P. R. China.

^c Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, P. R. China.

Fig. S1 Schematics of preparation of Co₂P@CTF monolithic chainmail electrode.

Fig. S2 (a) Photograph of denatured soybean protein suspension and (b) the

corresponding Zeta potential.

Fig. S3 (a-c) SEM images and (d) XRD pattern of Co²⁺-TF aerogel.

Fig. S4 (a) XPS survey spectrum of Co^{2+} -TF aerogel. (b) the contents of C, N, O, P and Co elements of Co^{2+} -TF aerogel. (c) P 2p and (d) Co 2p XPS spectra of Co^{2+} -TF

Fig. S5 Compressive-strain curve of Co₂P@CTF.

Fig. S6 SEM images of CTF electrode.

Table S1 ICP-OES	analysis of	Co ₂ P@CTF.
------------------	-------------	------------------------

Elamant	Content (wt %)	Co/P
Element		ratio
Со	0.75	2 2.1
Р	0.18	2.2.1

Fig. S7 The contents of C, N, O, P, and Co elements in CTF and Co₂P@CTF.

Fig. S8 CV curves of (a) CTF and (b) $Co_2P@CTF$ electrode measured at the nonfaradaic potential region of 0.12 to 0.22 V vs. RHE over the scan rate from 1 to 4 mV s⁻¹.

Fig. S9 (a) CV curves for Co₂P@CTF and CTF electrodes in a solution of 0.5 M $H_2SO_4+20 \text{ mM CuSO}_4+60 \text{ mM NaCl}$ at a scan rate of 1 mV s⁻¹. LSV curves of (b) Co₂P@CTF and (c) CTF electrodes for the stripping of Cu deposited at different overpotentials from -0.111 to 0.331 V vs. RHE in a 0.5 M $H_2SO_4+20 \text{ mM CuSO}_4+60 \text{ mM NaCl}$ solution (scan rate of 1 mV s⁻¹). (d) The charges required to strip the Cu deposited at different underpotentials for Co₂P@CTF and CTF electrodes. The dependence of TOF on overpotential for the (e) HER and (f) OER over the Co₂P@CTF and CTF electrodes.

Fig. S10 (a) HER polarization curves of CTF, Co₂P@CTF, and Pt/C in 0.5 M H₂SO₄ at a scan rate of 0.5 mV s⁻¹. (b) Tafel plots of CTF, Co₂P@CTF, and Pt/C. (c) Longterm stability test of Co₂P@CTF electrode for HER in 0.5 M H₂SO₄.

Fig. S11 (a and b) SEM and (c and d) TEM images of $Co_2P@CTF$ electrode after

HER stability test in 1.0 M KOH solution.

Fig. S12 (a) XRD pattern and (b) XPS survey spectrum, (c) P 2p, and (d) Co 2p XPS spectra of Co₂P@CTF electrode after HER stability test in 1.0 M KOH solution.

Fig. S13 CV curves of (a) CTF and (b) $Co_2P@CTF$ electrode measured at the nonfaradaic potential region of 0.98 to 1.08 V vs. RHE over the scan rate from 1 to 4 mV s⁻¹.

Fig. S14 (a and b) SEM images, (c) Raman spectrum, (d) XRD pattern, (e) XPS survey spectrum, (f) P 2p, (g) Co 2p XPS spectra, and (h) TEM image of Co₂P@CTF electrode after OER stability test in 1.0 M KOH solution.

Fig. S15 (a) OER polarization curves of CTF, Co₂P@CTF, and Pt/C in 0.5 M H₂SO₄ at a scan rate of 0.5 mV s⁻¹. (b) Tafel plots of CTF, Co₂P@CTF, and Pt/C. (c) Longterm stability test of Co₂P@CTF electrode for OER in 0.5 M H₂SO₄.

Fig. S16 (a) Photograph and (b) XRD pattern of monolithic Fe₂P/Fe₃C@CTF electrode. (c) SEM image showing the overall view of Fe₂P/Fe₃C@CTF electrode. (d) Top-view and (e) side-view SEM images of Fe₂P/Fe₃C@CTF electrode. (f) SEM image of Fe₂P/Fe₃C@CTF electrode demonstrating the uniform distribution of irregular Fe₂P/Fe₃C particles within carbon membrane matrix. (g) SEM image of Fe₂P/Fe₃C@CTF electrode and the corresponding EDX elemental mapping images (C,

Fe, and P).

Fig. S17 (a) Photograph and (b) XRD pattern of monolithic Ni₁₂P₅@CTF electrode. (c) SEM image showing the overall view of Ni₁₂P₅@CTF electrode. (d) Top-view and (e) side-view SEM images of Ni₁₂P₅@CTF electrode. (f) SEM image of Ni₁₂P₅@CTF electrode showing the uniform distribution of Ni₁₂P₅ particles (~500 nm) within carbon membrane matrix. (g) SEM image of Ni₁₂P₅@CTF electrode and the corresponding EDX elemental mapping images (C, Ni, and P).

Fig. S18 (a) Photograph and (b) XRD pattern of monolithic Cu₃P/Cu@CTF electrode.
(c) SEM image showing the overall view of Cu₃P/Cu@CTF electrode. (d) Top-view and (e) side-view SEM images of Cu₃P/Cu@CTF electrode. (f) SEM image of Cu₃P/Cu@CTF electrode showing the presence of large Cu₃P/Cu particles (~1 µm) on carbon membrane matrix. (g) SEM image of Cu₃P/Cu@CTF electrode and the corresponding EDX elemental mapping images (C, Cu, and P).

Fig. S19 (a) Photograph and (b) XRD pattern of monolithic Mo₂C@CTF electrode. (c) SEM image showing the overall view of Mo₂C@CTF electrode. (d) Top-view and (e) side-view SEM images of Mo₂C@CTF electrode. (f) High-resolution SEM image of Mo₂C@CTF electrode. (g) SEM image of Mo₂C@CTF electrode and the corresponding EDX elemental mapping images (C, Mo, and P).

Fig. S20 (a) Photograph and (b) XRD pattern of monolithic WC/W₂C@CTF electrode.
(c) SEM image showing the overall view of WC/W₂C@CTF electrode. (d) Top-view and (e) side-view SEM images of WC/W₂C@CTF electrode. (f) High-resolution SEM image of WC/W₂C@CTF electrode showing the presence of aggregated WC/W₂C particles. (g) SEM image of WC/W₂C and the corresponding EDX elemental mapping images (C, W, and P).

Fig. S21 (a) HER polarization curves and (b) the overpotentials at 100 mA cm⁻² for monolithic carbon-based electrodes in 1.0 M KOH solution. (c) OER polarization curves and (d) the overpotentials at 100 mA cm⁻² for monolithic carbon-based electrodes in 1.0 M KOH solution.