Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2023

Supporting Information for

Solar-driven electrochemical NH₃ splitting into H₂ and N₂

Miwako Teranishi,^a Shin-ichi Naya^{a*} and Hiroaki Tada^{b*}

^a Environmental Research Laboratory, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.

^b Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan.

E-mail: shinichi.naya@itp.kindai.ac.jp, hiroaki.tada@mirai.nagoya-u.ac.jp

Table of Contents

Materials-----S2 Fig. S1. SEM image and EDS-elemental mapping of the cross-section of BiVO₄/FTO.S3 Fig. S2. Tauc plots for BiVO₄/FTO samples. S3 Fig. S3. Dark current-potential curves for several electrodes in NH₃ aq.S4 Fig. S4. (A) Cross-sectional SEM images of SnO₂/FTO and FTO. (B) Film thickness distribution of SnO₂/FTO and FTO. Fig. S5. CVs of FTO and SnO₂/FTO electrodes for the [Fe(CN)₆]³/Fe(CN)₆⁴ redox reactions.S5 Fig. S6. (A) Product analysis in the EC reaction with the FTO electrode. (B) The selectivity of H₂ production from NH₃. Fig. S7. PCA curves for the BiVO₄/FTO and BiVO₄/SnO₂/FTO electrodes under illumination of simulated sunlight.....S6 Fig. S8. pH-dependence of the PEC properties of the BiVO₄/FTO electrode......S6 Fig. S9. NH₃ concentration-dependence of the PEC properties of the BiVO₄/FTO electrode.S7

Materials

Fluorine-doped tin(IV) oxide film-coated glass (FTO, Aldrich TEC7, sheet resistance = 7 Ω /square) and Nafion film (Nafion 117, thickness = 0.007 inch) were purchased from Aldrich. Bi(NO₃)₃·5H₂O (> 99.5%), acetic acid (C₂H₄O₂, > 99.7%), VO(acac)₂ (> 97.0%), acetylacetone (> 99.5%), SnCl₄·5H₂O (> 98.0%), EtOH (> 99.5%), Na₂SO₄ (> 99.0%), and ammonia solution (28.0-30.0%) were purchased from KANTO CHEMICAL CO., INC. All chemicals were used as received without further purification.

Fig. S1. SEM image (upper) and energy dispersive X-ray spectroscopy (EDS)elemental mapping (lower) of the cross-section of $BiVO_4$ (N = 10)/FTO.

Fig. S2. Tauc plots for BiVO₄/FTO samples prepared by repeating the spin coating N times.

Fig. S3. Dark current-potential curves for several electrodes in deaerated 0.1 M Na_2SO_4 aq. containing NH₃ with varying concentrations pH 11.

Fig. S4. (A) SEM images of the cross-sections of SnO_2/FTO (upper) and FTO (lower). The inset shows the SEM image of the SnO_2/FTO surface in the upper panel. (B) Film thickness distribution of SnO_2/FTO (upper) and FTO (lower).

Fig. S5. CVs of FTO and SnO₂/FTO electrodes in an aqueous electrolyte solution containing $[Fe(CN)_6]^3$ -/Fe(CN)₆⁴⁻ redox pairs.

Fig. S6. (A) Product analysis in the EC reaction with the FTO electrode at E = +2.2 V in 0.1 M Na₂SO₄ electrolyte solution containing 0.59 M NH₃ (pH 11). (B) The selectivity of H₂ production from NH₃ (S_{H2}(NH₃)) as a function of reaction time.

Fig. S7. PCA curves for the BiVO₄/FTO and BiVO₄/SnO₂/FTO electrodes in 0.1 M Na₂SO₄ electrolyte solution (pH 11) under illumination of visible light ($\lambda > 430$ nm) in simulated sunlight (AM 1.5, 100 mW cm⁻², one sun).

Fig. S8. pH-dependence of the PEC properties of the BiVO₄/FTO electrode in 0.1 M Na₂SO₄ electrolyte solution (pH 7, 9, 11) under illumination of visible light (λ > 430 nm) in simulated sunlight (AM 1.5, 100 mW cm⁻², one sun): (A) Product analysis (blue H₂, green N₂, red O₂), (B) Selectivity of H₂ production from NH₃ (S_{H2}(NH₃)), (C) PCA curves.

Fig. S9. NH₃ concentration-dependence of the PEC properties of the BiVO₄/FTO electrode in 0.1 M Na₂SO₄ electrolyte solution (pH 11) under illumination of visible light (λ > 430 nm) in simulated sunlight (AM 1.5, 100 mW cm⁻², one sun): (A) Product analysis (blue H₂, green N₂, red O₂), (B) Selectivity of H₂ production from NH₃ (S_{H2}(NH₃)), (C) PCA curves.

Fig. S10. Long-term stability of the BiVO₄/FTO electrode. The PCA curve was measured in 0.1 M Na₂SO₄ electrolyte solution containing 0.59 M NH3 (pH 9) under illumination of visible light (λ > 430 nm) in simulated sunlight (AM 1.5, 100 mW cm⁻², one sun).

Fig. S11. Plots of width of the space charge layer (W) as a function of $\phi_{scl} - kT/q$.

Fig. S12. (A) *J*-*E* curves of BiVO₄(*N* = 5, 10, 20)/FTO with different BiVO₄ film thickness in 0.1 M Na₂SO₄ electrolyte solution containing 0.59 M NH₃ (pH 11) under illumination of visible light ($\lambda > 430$ nm) in the simulated sunlight (AM 1.5, 100 mW cm⁻², one sun). (B) PCA curves of BiVO₄(*N* = 5, 10, 20)/FTO at the rest potential in the dark (*E* = +0.164 V) under the same irradiation conditions.