Supplementary information for

Developement of a CO₂-biomethanation reactor for producing methane from green H₂

Grégory Cwicklinski^{1*}, Roger Miras¹, Julien Pérard¹, Clara Rinaldi¹, Elisabeth Darrouzet¹, Christine Cavazza^{1*}

1: Univ. Grenoble Alpes, CEA, CNRS, IRIG, CBM. F-38000 Grenoble (France)

* Corresponding authors

Mark	Apparatus	Features / Function
1, 8	Top and bottom perforated flanges Béné inox Ref : 357182-65	304L / 1.4307; DN65 / 2 ^{1/2} "; thickness 18 mm Perforated flange for fluid circulation and bioreactor instrumentation
2	ISO tube for double jacket Béné inox Ref : 372212-762	304L / 1.4307; DN65 / 2 ^{1/2} "; thickness 2 mm Double jacket for temperature control
3	ISO tube for bubble column Béné inox Ref : 372212-1142	304L / 1.4307; DN100 / 4"; thickness 2 mm Bubble column for the methanation reaction
4	Borosilicate-viewing window Béné inox Ref: 261421-76	$304L$; DN76 / $3''$; PF = 10 bar. TF = 130° C Part of the bioreactor allowing visualization of the culture medium and correct operation of the gas bubbling system.
5	Welded boss for instrumentation Béné inox Ref : 652344-10	316L ; 3/8" ; Internal diammeter 12.6 mm Connection for probe instrumentation up to 12 mm in diameter (e.g. pH probe). Used with "double ring" type fittings and Teflon rings.
	Sealed passage Ham-let Ref: 768LGSS12MMX3/8 & 760LST12MM	
6	Porous metal filter Poral Grade 3	304L SS; diameter 50 mm; mean pore size 10 μm Promotion of bubbly flow at the reactor inlet (gas supply)
7	Porous metal filter Stem Ref. SPR1/8I	316L SS; cylinder with surface 6 cm ² ; mean pore size 80 μm Promotion of bubbly flow at the reactor inlet (gas recirculation)

Table S1 : Details of the bioreactor equipment

Figure S1 : CAD view of bioreactor with dimensions. Left: front cross-section; right: top view

Dimension	Correlation / Expression / experimental value	Reference
Mass transfer	$\phi_i = k_{L,i} a \cdot \left(H_i^{cc} \cdot C_{G,i} - C_{L,i} \right)$	1
Coefficient de transfert de masse	$k^{d_b < 0.0025}_{l,i} = 0.31 \cdot \rho^{(2/3)}_{l} \cdot \left(\frac{g \cdot \rho_l}{\mu_l}\right)^{(1/3)}$	2
	$k^{d_b > 0.0025}_{l,i} = 0.42 \cdot \rho^{(1/2)}_{l} \cdot \left(\frac{(g \cdot \rho_l)^{(1/2)}}{\mu^{(1/2)}_{l}}\right)^{(1/3)}$	
Volume interfacial area	$a = \frac{6 \cdot \varepsilon_G}{d_b}$	3
Holdup	$\varepsilon_g = \frac{U_g}{u_b}$	4
Bubble rise velocity	$u_b = \frac{g \cdot \rho_l}{18 \mu_l} d_b^2$	4
Superficial velocity	$U_{G} = \frac{Q_{g}}{S_{reac}} = \frac{Q_{n,g}}{S_{reac}} \cdot \frac{P_{n}}{P_{reac}} \cdot \frac{T_{reac}}{T_{n}}$	
Bubble size	$d_b = 0.17 \ mm$	Experimentally measured in this work
Axial dispersion coefficient	$D_{ax} = K_r D_{reac}^{4/3} (U_g g)^{1/3}$ and $K_r = 0.35$	5

Table S2. Correlations, expressions and experimentally determined values used in the ADR model of the bubble column bioreactor

Mark	Apparatus	Features / Function
	Manual pressure regulator Air	Maximum pressure reduction: 10 bar (relative)
А	Liquide	Maximum flow rate: $Q = 3.5 \text{ Nm}^3 \text{ h}^{-1}$ (from supplier N ₂ calibration)
	Ref: BS 50-10-3.5	Adjustment of the inlet pressure $(H_2 + CO_2)$.
	Flow regulator	Calibrated for H_2 -CO ₂ mixture in the range : 0.4 L h ⁻¹ < Q<2 L h ⁻¹
В	Bronkhorst	Measurement and regulation of the reactor feed rate
	Ref. F-201CV	
	Porous metal filter	304L SS; diameter 50 mm; mean pore size 10 μ m
С	Poral	Promotion of bubbly flow at the reactor inlet (gas supply)
	Grade 3	
	Porous metal filter	316L SS; cylinder with surface 6 cm ² ; mean pore size 80 μ m
D	Stem	Promotion of bubbly flow at the reactor inlet (gas recirculation)
	Ref. SPR1/8I	
	Pump	Positive displacement diaphragm pump
F	Schwarzer Precision	Range: 3.39 L h ⁻¹ < Q < 11.13 L h ⁻¹ at 24°C and 1.14 bar
-	Ref : SP 622 EC-BL-DU-HR-DV (24 V	Adjustment and measurement of the recirculation flow-rate (from
	DC)	top to bottom of the reactor)
F	Hvdraulic guard	V = 12 mL
	,	Protection of the reactor against possible oxygen contamination
		Voltage: 12V DC, Maximum liquid flow: 650 L h ⁻¹ , Power
G	Centrifugal Pump	consumption: 1,6 A
-	Ref : TD40G-1260B	Circulation of the heat transfer fluid (DI water) in the reactor's
		double-jacket
	Flow regulator	Calibrated for H_2 -CO ₂ mixture in the range 0.4 L h ⁻¹ < Q < 5 L h ⁻¹
Н	Bronkhorst	Measurement and regulation of the reactor output flow
	Ref. F-211CV	
	Peltier thermal control unit	Cooling or heating for thermal regulation of the culture medium
I	(See	
	Table S	
		V = 2.8 L with double jacket (V = 1.7 L exchange surface 833 cm ²).
J	Bubble column bioreactor with	Methanogen culture chamber for methanation reaction equipped
	double jacket thermal control	with temperature control and gas dispersion system.
		V = 108 mL.
к	Gas-liquid separator	Separation of the liquid dragged in the upper part of the reactor
		(due to the possible creation of foam)
		V = 143 mL, exchange surface 132 cm ²
L	Condenser	Water condensation of the outlet gas stream
	Safety valve	Adjustable
М	Ham'let	Protection of the reactor in the event of overpressure
	Ref. H-900-SS-L-6MM-SL-CE	
N	Adjustable check valve	Pressure adjustment of the reactor.
	Ham'let	
	Ref. H-400A-SS-L-6MM-50	
0		V = 45ml
	Desiccator (alumina)	Elimination of traces of water in the outlet gas before measuring
		the composition and the flow rate.

Table S3: Details of experimental set-up equipment

Mark	Apparatus	Features / Function
1	Thermal mass flowmeter Bronkhorst	See B in Table S3
	Ref. F-201CV	Measurement of gas supply flow (unit of use L h ⁻¹) Measurement uncertainty: \pm 0.5 % (\pm 0.1 % of the full scale)
2	Pressure sensor Keller Ref. PAA25	Range 0 bar < P << 5 bars Measurement of the pressure of the feed gas Measurement uncertainty: ± 1.27 %
3,5, 6	Temperature, pH and redox potential probe Mettler-Toledo Ref. NPRO3253i/SG/120	Ranges 0 °C < T < 100°C ; 0 < pH < 12 ; -513 mV < ORP < 513 mV Measurement of the culture medium temperature (T), pH and redox potential (ORP) Measurement uncertainty: T \pm 1.00°C ; pH \pm 4.75 % ; ORP \pm 5 mV
4	Turbidity sensor DFRobot SEN0189	Range 0 < OD ₆₀₀ < 2.5 (absorbance at 600 nm) Measurement of the culture medium turbidity representative of the cell concentration) Measurement uncertainty: ± 1.98 %
7	Pressure sensor Keller Ref. PAA25	Range 0 bar < P < 5 bars Measurement of the reactor's pressure Measurement uncertainty: ± 2.03 %
8	Thermal mass flowmeter Bronkhorst Ref. F-211CV	See H in Table S3 Measurement of outlet gas flow (unit of use L h^{-1}) Measurement uncertainty: ± 0.5 % (± 0.1 % of the full scale)
9	Pressure sensor Wika Ref. A-10	Range 0 < P < 3.2 bars Measurement of the pressure of the outlet gas Measurement uncertainty: ± 0.95 %
10	Themocouple type K RS 397-1264	Range -40 °C < T < 1100 °C Measurement of the temperature of the outlet gas Measurement uncertainty: ±- 1.5 °C
11	NDIR gas sensor smartGAS Ref. F3-212507-05000	Calibration range $0 < X_{CO2} < 50\%$ Measurement of the CO ₂ content in the outlet gas Measurement uncertainty: ± 1.24 %
12	NDIR gas sensor smartGAS Ref. 042108-05000	Calibration range $0 < X_{CH4} < 100\%$ Measurement of the CH ₄ content in the outlet gas Measurement uncertainty: \pm 1.69 %
13	Pump Schwarzer Precision Ref : SP 622 EC-BL-DU-HR-DV (24 V DC)	See E in Table S3 Measurement of the recirculation flow-rate

Table S4: Details of the experimental set-up on-line instrumentation.

Control module

A control module dedicated to temperature control and optical density measurement has been developed specifically for the needs of the experimental bench. The module is entirely based on Arduino® microcontrollers type Mega 2560 Rev3.

The microcontroller is used to regulate the temperature of a heat transfer fluid (water) using a heat exchange system (2). The system consists of a flat heat exchanger (3), Peltier thermoelectric modules (4) with a total output of 120 W, passive heat sinks (2) and fans (1). Temperature control is achieved by alternating the Seebeck and Peltier effects by reversing the thermoelement power supply. The temperature of the heat transfer fluid is controlled by a PT100 sensor and circulated by a centrifugal micropump. The components used are listed in table S5.

The microcontroller is also used to measure the concentration of microorganisms by measuring the turbidity of the medium (Figure S2). The system consists of a turbidity measurement cell (E) integrated in a culture medium recirculation loop using a volumetric pump (8). To obtain the concentration value in OD units, a calibration between the turbidity measurement and the absorbance measurement at 600 nm was carried out in the laboratory (Figure S3). The components used in the fabrication of the turbidity measurement module are listed in table S5.

Figure S2: Diagram of control module for temperature regulation and OD determination

Figure S3: Correlation of optical density measurement at 600 nm in Escherichia coli by turbidity measurement using a DFRobot SEN0189 turbidimeter

Mark	Apparatus	Features / Function
А	Microcontroller	Voltage : 12 VDC
	Arduino	
	Ref : Mega 2560 Rev3	
В	HMI	Voltage : 5 VDC ; Screen 4.3"
	Nextion	
	Ref : NX4827T043	
C	Thermal sensor module	Functional detection range: 30 °C -350 °C
	DFROBOT	Relative error: ±2%
	Ref: SEN0198	
D	Cytron	Voltage ranges: 7 – 30V
	Ref: Shield MD10	Maximum current: 10 A
E	Analog turbidity sensor	Operating Temperature: 5 °C – 90 °C
	DFROBOT	Relative error: ±8% measured values
	Ref: SEN0189	
1	Heat exchanger	Material: Copper
	Laird Technologies	Size: 12.7 x 57 x 51mm
	Ref: LI201	
2	Peltier module	Active Size: 40 x 40 mm
	Adaptive	Maximum cooling capacity: 94.3W
	ET-199-14-15-E	Maximum temperature difference : +74K
3,4	Fans and Passive heat sinks	Material: Aluminium
	Xilence	Size: 95 x 95 x 70 mm
	Ref: 1200	Flow : 40.9 CFM
		Voltage alimentation : 12 VDC
5	Inermal water pump	Type: Centrifugal
	Ref: 1D40G-1260B	Voltage: 12V DC
		Maximum liquid flow: 650 L h -
6	Temperature sensor	PT100 ; Ø 3 mm, length: 200 mm
	Jumo	3 wire ; classe B
	Ref: 902250/32-415-1001-1-3-200-	
	04-2500/000	
7	Culture medium circulation pump	Type: Diaphragm
	RS Pro	Flow Rate : 380 mL min ⁻¹ ; DP: 0.7 bars
	Ref : D250-03	Voltage : 1.5 – 5 VDC
		Power consumption: 0.48 W

Table S5 Thermal and turbidity control module details

Figure S4: Evolution of the growth of M. maripaludis in solution (A) and of the volume fraction of CH_4 in the tube gas phase (B-C) in the two tested growth media.

Gas chromatography

Gas chromatography (GC) measurements were used to determine the composition of the gaseous headspace in the cultures. They were carried out using a Perkin Elmer's Clarus 580 GC with a Porapak Q, 80/100, SS, 6' x 1/8" x 6" GC column, with N₂ as the carrier gas. FID Detector was used to analyse CH₄, CO₂ and CO. TCD Detector was used to analyse H₂ and O2. 50 μ L of overhead gas were injected into the GC using a gas-tight glass Hamilton syringe. The quantity of gas injected is normalized with temperature and pressure, and compared with an extemporaneously produced calibration curve.

Figure S5: Monitoring of the temperature of the culture of M. maripaludis in the bioreactor

Figure S6: Monitoring of the $OD_{600 nm}$ of the culture of M. maripaludis in the bioreactor

Figure S8: Monitoring of the pH of the culture of M. maripaludis in the bioreactor

List of Latin notations

a	interfacial area	$[m^2 m^{-3}]$
$C_{\varphi,i}$	Molar concentration of « i » in the « φ » phase	$[mol m^{-3}]$
d_b	Diameter of gas bubbles in the column	[m]
D	Diameter	[m]
D_{ax}	Axial dispersion	$[m^2 s^{-1}]$
Е	Gaz hold-up	[-]
g	Acceleration of gravity at the Earth's surface	$[m s^{-2}]$
H ^{cc}	Henry's law coefficient expressed as a ratio of the concentrations of « i » between the liquid and gas phases	[-]
$k_{\varphi,i}$	Transfer coefficient of « i » in the « φ » phase	$[m s^{-1}]$
MER	Molar production of methane per reactor volume	$[mol m^{-3} s^{-1}]$
МР	Methane Production	$[mol m^{-3} m^{-3}]$
PVR	Power density per unit reactor volume	$[Wh m^{-3}]$
Р	Pressure	[<i>Pa</i>]
Qv	Volume flow	$[m^3 s^{-1}]$
Qn	Molar flow	$[mol s^{-1}]$
r _{app}	Apparent reaction rate	$[s^{-1}]$
S	Surface	$[m^2]$
Т	Temperature	[K]
t	Time	[<i>s</i>]
U_g	Surface velocity of gas in the column	$[m s^{-1}]$
u _b	Rising speed of gas bubbles	$[m s^{-1}]$
χ	Stoichiometric conversion yield	[-]
Y _{CH4}	Methane conversion yield	[-]
y_i	Gas volume fraction of compound « i »	[-]

List of Greek notations

ϕ_i	Volumetric molar flow of material « i » transferred	$[mol m^{-3} s^{-1}]$
η_i	Stoichiometric coefficient of the compound « i »	[-]
ρ	Density	$[kg m^{-3}]$

List of subscript

ax	Axial direction of flow
арр	Relative to an apparent value
g	Relating to gas
i	Relative to the indefinite component
l	Relative to the liquid
n	Relative to normal conditions
reac	Reactor related
φ	Relative to a phase (liquid or gas)

List of superscript

0	Relative to a standard value
СС	Concentration ratio
d_b	Bubble diameter
in	Relative to a reactor inlet value
out	Relative to a reactor outlet value

List of abbreviations

ADM	Axial dispersion model
BCR	Bubble column reactor
BMP	Biological methane production
CAD	Computer-assisted design
CSTR	Continuous stirred-tank reactor
DCW	Dryed cell weight
DSMZ	Deutsche Sammlung von Mikroorganismen und Zellkulturen
EnR	Renewable energy
FBR	Fixed bed reactor
FFKM	Perfluoroélastomères
HEPES	Biochemical buffer
LOHC	Liquid organic hydrogen carriers
MER	Methane evolution rate
MM	Minimum medium
MR	Membrane reactor
NDIR	Non-dispersive infrared sensor
OD	Optical Density
ORP	Oxydo Reduction Potential
RM	Rich medium

References

- 1 B. W. K. Lewis and W. G. Whitman, *Ind.& Engineer. Chem.*, 1924, **16**, 1215-1220.
- 2 P. H. Calderbank and M. B. Moo-Young, *Chem. Eng. Sci.*, 1961, **16**, 39–54.
- 3 R. Maceiras, E. Álvarez and M. A. Cancela, *Chem. Eng. J.*, 2010, **163**, 331–336.
- 4 N. Kantarci, F. Borak and K. O. Ulgen, *Process Biochem.*, 2005, **40**, 2263–2283.
- 5 S. Degaleesan and M. P. Dudukovic, *AIChE J.*, 1998, **44**, 2369–2378.