Supporting Information

Constructing interface structure of Mo₅N₆/Ni₃N/Ni/NF for efficient and stable electrocatalytic hydrogen evolution under alkaline conditions

Yang Zhou ^{a, b, #}, Jing Zhou ^{a, #}, Muzaffar Ahmad Boda ^b, Kunfeng Zhao ^b, Haojie Ma

^b, Chenhao Shi ^b, Dingwang Yuan ^{a,*}, Zhiguo Yi ^{b,*}

^a College of Materials Science and Engineering, Hunan University, Changsha 410082, China.

^b State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai

Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China.

[#] These authors contributed equally to this study.

E-mail address: <u>zhiguo@mail.sic.ac.cn</u> (Zhiguo Yi), <u>dwyuan@hnu.edu.cn</u> (Dingwang Yuan)

Chemicals and materials

Nickel chloride anhydrous (NiCl₂, Ni > 42.0%), ammonium chloride (NH₄Cl, 99.0%), sodium molybdate dihydrate (Na₂MoO₄•2H₂O, 99.0%+), potassium hydroxide (KOH, \geq 90.0%) purchased from Shanghai Titan Scientific Co. LTD (www.tansoole.com). Ethanol absolute (C₂H₆O, \geq 99.7%) and acetone (C₃H₆O, \geq 99.5%) purchased from Shanghai Lingfeng Chemical Reagent Co. LTD (www.yonghuachem.com). Hydrochloric acid (HCl, 36.0~38.0%) purchased from www.reagent.com.cn. All of the reagents were used as received without further purification. Deionized water was used throughout the experiments.

Fig. S1. XRD pattern of the $Mo_5N_6/Ni_3N/Ni/NF$.

Fig. S2 Raman spectra of Ni/NF and MoO₄-Ni/NF.

Fig. S3 Raman spectra of MoO₄-Ni/NF and Mo₅N₆/Ni₃N/Ni/NF.

Fig. S4. SEM images of the commercial Ni foam.

Fig. S5. Low-magnification SEM images of Ni/NF.

Fig. S6. Low-magnification SEM images of MoO_4 -Ni/NF.

Fig. S7. Low-magnification SEM images of $Mo_5N_6/Ni_3N/Ni/NF$.

Fig. S8. Photographs of contact angle of the (a) NF and (b) $Mo_5N_6/Ni_3N/Ni/NF$.

Fig. S9. The scanning electron microscopy image and the corresponding elemental mappings of Ni, Mo, N, and O in the $Mo_5N_6/Ni_3N/Ni/NF$.

Fig. S10. EDS spectrum of $Mo_5N_6/Ni_3N/Ni/NF$ sample (inset is the ratio of Ni, Mo, N,

O).

Fig. S11. (a, b) More detailed SAED pattern information of $Mo_5N_6/Ni_3N/Ni/NF$ and HRTEM image.

Fig. S12. (a) LSV polarization curves and (b) the corresponding Tafel plots of the as-

prepared catalysts without IR-correction.

Fig. S13. (a, b) LSV polarization curves and the corresponding Nyquist plots of the $Mo_5N_6/Ni_3N/Ni/NF$ which prepared by different concentrations of Na_2MoO_4 ·2H₂O in hydrothermal reaction. (c, d) LSV polarization curves and the corresponding Nyquist plots of the $Mo_5N_6/Ni_3N/Ni/NF$ which prepared by different nitridation time.

Fig. S14. CV curves of the (a) blank Ni foam; (b) Ni/NF; (c) MoO₄-Ni/NF; (d)

 $Ni_3N/Ni/NF$; (e) $Mo_5N_6/Ni_3N/Ni/NF$ tested at different scan rates.

Fig. S15. The LSV curves of $Mo_5N_6/Ni_3N/Ni/NF$, MoO_4-Ni/NF , $Ni_3N/Ni/NF$ and Ni/NF normalized to ECSA.

Fig. S16. The Nyquist plots of Ni₃N/Ni/NF and Mo₅N₆/Ni₃N/Ni/NF which performed at OCV. Inset: equivalent circuit model.

Fig. S17. Initial, transition and final states for water decomposition. Orange, pink, blue, and purple atoms represent Ni, H, N, and Mo atoms, respectively.

Fig. S18. The SEM images of the $Mo_5N_6/Ni_3N/Ni/NF$ after chronopotentiometry measurement (-100 mA/cm²@100h).

Fig. S19. The scanning electron microscopy image and the corresponding elemental mappings of Ni, Mo, N, and O in the $Mo_5N_6/Ni_3N/Ni/NF$ after chronopotentiometry measurement (-100 mA/cm²@100h).

Table S1. Elemental composition of $Mo_5N_6/Ni_3N/Ni/CF$ (CF is copper foam) by ICP-OES tests.

Element	Mass fraction (%)
Ni	74.78
Мо	0.71

Table S2. The atomic percentages of Ni and Mo in MoO_4 -Ni/NF and $Mo_5N_6/Ni_3N/Ni/NF$ in XPS spectra.

MoO ₄ -Ni/NF						
Name	Ni 2p	Mo 3d	N 1s	C 1s		
Atomic %	27.1	7.48	25.65	39.76		
Mo ₅ N ₆ /Ni ₃ N/Ni/	NF					
Name	Ni 2p	Mo 3d	N 1s	C 1s		
Atomic %	8.89	13.72	52.97	24.42		

		Tafel	Stability $(mA/cm^2 \text{ or } mV \text{ for } h)$	Reference			
Catalyst	$\eta_{10}(mV)$	slope					
		(mV/dec)					
Mo ₅ N ₆ /Ni ₃ N/Ni/NF	27	46.8	-100 mA/cm^2 for 100 h	This work			
NiMoN/CC	109	95.0	-50 mA/cm^2 for 12 h	1			
Nb ₂ O ₅ -Ni ₃ N/NF	0.0	100 4	-100 mA/cm^2 and -200	C			
	80	100.4	mA/cm ² for 12 h	2			
NiCo ₂ N/NF	180	79.0	-10 mA/cm^2 for 50 h	3			
NiMoN/Ni ₃ N/NF	28	49.0	-10 mA/cm^2 for 24 h	4			
Ni ₃ N-V ₂ O ₃ /NF	57	50.0	-100 mV for 24 h	5			
Ni-Mo-N/CFC	40	70.0	-10 mA/cm^2 for 12 h	6			
Ni ₃ N-Mo ₂ N/NF	66	67.4	-10 mA/cm^2 for 48 h	7			
Ni ₃ N/Ni _{0.2} Mo _{0.8} N/NF	5 55	54.0	-10 mA/cm^2 for 50 h	8			
Co-Ni ₃ N/NF	30	41.6	-50 mA/cm^2 for 24 h	9			
Ni ₃ N/W ₅ N ₄ /NF	31	34.0	-100 mA/cm^2 for 150 h	10			
Co ₂ NiN/CC	123	98.0	-100 mA/cm^2 for 6 h	11			
FeOOH/Ni ₃ N/CC	67	82.0	-10 mA/cm^2 for 50 h	12			
Co/MoN/NF	52	77.5	-40 mA/cm^2 for 70 h	13			
Ni ₂ Mo ₃ N/NF	21	62.0	-10 mA/cm ² for 24 h	14			

Table S3. Comparison of HER catalytic activity, stability and Tafel slope between $Mo_5N_6/Ni_3N/Ni/NF$ and recently reported self-supporting transition metal nitride catalysts under alkaline condition.

NF: nickel foam; CC: carbon cloth; CFC: conductive carbon fiber cloth.

References

- 1 Y. Zhang, B. Ouyang, J. Xu, S. Chen, R. S. Rawat and H. J. Fan, *Adv. Energy Mater.*, 2016, **6**, 1600221.
- 2 X. H. Chen, X. L. Li, L. L. Wu, H. C. Fu, J. Luo, L. Shen, Q. Zhang, J. L. Lei, H. Q. Luo and N. B. Li, *J. Mater. Chem. A*, 2021, 9, 11563–11570.
- 3 Y. Wang, B. Zhang, W. Pan, H. Ma and J. Zhang, *ChemSusChem*, 2017, **10**, 4170–4177.
- 4 W. Hua, H. Sun, H. Liu, Y. Li and J.-G. Wang, Appl. Surf. Sci., 2021, 540, 148407.
- 5 P. Zhou, G. Zhai, X. Lv, Y. Liu, Z. Wang, P. Wang, Z. Zheng, H. Cheng, Y. Dai and B. Huang, *Appl. Catal.*, *B*, 2021, **283**, 119590.
- 6 Y. Li, X. Wei, L. Chen, J. Shi and M. He, Nat. Commun., 2019, 10, 5335.
- 7 R. Dai, H. Zhang, W. Zhou, Y. Zhou, Z. Ni, J. Chen, S. Zhao, Y. Zhao, F. Yu, A. Chen, R. Wang and T. Sun, *J. Alloys Compd.*, 2022, **919**, 165862.
- 8 R.-Q. Li, X.-Y. Wan, B.-L. Chen, R.-Y. Cao, Q.-H. Ji, J. Deng, K.-G. Qu, X.-B. Wang and Y.-C. Zhu, *Chem. Eng. J.*, 2021, **409**, 128240.
- 9 M. Wang, W. Ma, Z. Lv, D. Liu, K. Jian and J. Dang, J. Phys. Chem. Lett., 2021, 12, 1581–1587.
- 10F. Ma, S. Wang, X. Gong, X. Liu, Z. Wang, P. Wang, Y. Liu, H. Cheng, Y. Dai, Z. Zheng and B. Huang, *Appl. Catal.*, B, 2022, 307, 121198.
- 11 W. Lv, L. Xu, L. Wang, Y. Yang, L. Wang, T. Wang, D. Li, H. Shao, F. Li and X. Dong, *J. Alloys Compd.*, 2022, **920**, 165934.
- 12 J. Guan, C. Li, J. Zhao, Y. Yang, W. Zhou, Y. Wang and G.-R. Li, *Appl. Catal.*, *B*, 2020, **269**, 118600.
- 13 J. Sun, W. Xu, C. Lv, L. Zhang, M. Shakouri, Y. Peng, Q. Wang, X. Yang, D. Yuan, M. Huang, Y. Hu, D. Yang and L. Zhang, *Appl. Catal.*, *B*, 2021, **286**, 119882.
- 14S. H. Park, T. H. Jo, M. H. Lee, K. Kawashima, C. B. Mullins, H.-K. Lim and D. H. Youn, *J. Mater. Chem. A*, 2021, **9**, 4945–4951.