Electronic Supplementary Information

Alkylsilyl-Substituted Benzodithiophene-Based Small Molecules As Promising Hole-Transport Materials For Perovskite Solar Cells[†]

M. E. Sideltsev, A. N. Zhivchikova, I. E. Kuznetsov, D. K. Sagdullina, M. M. Tepliakova, A. A. Piryazev, D. V. Anokhin, M. S. Maksimovich, N. G. Nikitenko, D. A. Ivanov, and A. V. Akkuratov

Figure S1. ¹H NMR spectrum of compound **2**.

Figure S2. ¹³C NMR spectrum of compound **2**.

Figure S3. ¹H NMR spectrum of **TB-Si**₃₋₃.

Figure S4. ¹³C NMR spectrum of **TB-Si₃₋₃**.

Figure S5. DSC plots for small molecules TB-C10, TB-Si4-3, and TB-Si3-3

Figure S6. Energy level diagram of components of PSCs.

Figure S7. The optimized geometry of the **TB-C**₁₀, **TB-Si**₄₋₃, **TB-Si**₃₋₃. Distances between atoms are indicated in Å.

Figure S8. HOMO and LUMO distribution for **TB-C**₁₀, **TB-Si**₄₋₃, **TB-Si**₃₋₃ (a); and frontier molecular orbital energy levels as estimated from experiment and predicted by B3LYP/6-31+G(d) calculations (b).

Table S1. HOMO/LUMO energies and energy gaps (E_g) for **TB-C₁₀**, **TB-Si₄₋₃**, **TB-Si₃₋₃** calculated using the PBE/6-31+G(d) and B3LYP/6-31+G(d) approaches in comparison with experimental data.

	HOMO/ LUMO, eV			Eg, eV			
	Calculation		Experiment	Calculation		Experiment	
	PBE/	B3LYP/		PBE/	B3LYP/		
	6-31+G(d)	6-31+G(d)		6-31+G(d)	6-31+G(d)	EgCV	Egopt
TB-C ₁₀	-4.49/-3.41	-5.02/-3.01	-5.15/-3.60	1.08	2.01	1.55	1.99
TB-Si ₄₋₃	-4.58/-3.45	-5.10/-3.04	-5.45/-3.57	1.13	2.06	1.88	2.05
TB-Si ₃₋₃	-4.60/-3.46	-5.11/-3.06	-5.27/-3.58	1.14	2.05	1.69	2.05

Figure S9. J-V curve for PSCs with non-doped spiro-OMeTAD as HTM.

Figure S10. AFM images for thin films of **TB-C**₁₀(*a*), **TB-Si**₄₋₃(*b*) and **TB-Si**₃₋₃(*c*) deposited from chlorobenzene. AFM (*d*, *e*, *f*) and surface potential images (*g*, *h*, *i*) of MAPbI₃/**TB-C**₁₀, MAPbI₃/**TB-Si**₄₋₃, MAPbI₃/**TB-Si**₃₋₃, respectively.

Figure S11. Contact angle of water on the surface of MAPbI $_3$ /HTMs.

Figure S12. Evolution of relative power conversion efficiency of perovskite solar cells incorporating **TB-C₁₀**, **TB-Si₄₋₃**, **TB-Si₃₋₃** and PTAA as HTMs.