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Monte Carlo Simulations

As mentioned in the main text, our simulation procedure is not likely to result in equilibrium

gels. Similarly, we know that the structures in the squid are highly regular because they

are highly transparent, and therefore are likely close to an energetic minimum, but we do

not know how close they may be to a state of physical equilibrium. Therefore, our goal is

to anneal the systems to low enough temperatures to form configurations with structures

similar enough to both the transparent squid structures and to final equilibrium gel to merit

structural analysis. We assess the quality of our sampling in this regard by calculating

autocorrelation functions for displacement of particles, Cp(t), as well as the energy per

particle, Ce(t). Positional autocorrelation is calculated as
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C(t) =
1

N

N∑
i=1

[
1−Θ(σ − |ri(t)− ri(0)|)

]
, (1)

where the sum runs over all particles, ri gives the position vector of the ith particle, Θ is

the Heaviside function, and σ is the particle diameter. A particle is thus considered to have

decorrelated from its original position if it has moved by at least one particle diameter,

and the positional autocorrelation function quantifies the fraction of particles that have not

decorrelated from their position at t = 0 at a given time t. The autocorrelation for energy

is calculated as

Ce(t) =
1

N

Nframes−t∑
t′=ts

t∑
t′′=0

(E(t′ + t′′)− ⟨E⟩)(E(t′)− ⟨E⟩), (2)

where E(t) is the energy at time t, ⟨E⟩ is the ensemble average of E, ts is the time from the

averaging begins (in our case ts = 2Nframes/3), and N is a normalization factor chosen such

that Ce(0) = 1.

Fig. S1a shows Cp(t) and Fig S1b shows Ce(t) for various temperatures. A sum of two

exponentials were fit to the autocorrelation data to extract correlation times, τα, and the

larger τα value is reported in the legends. For θ = 180◦, the positions of particles are well

sampled down to β = 12, while for smaller θ, this is the case for β = 20 or so. It is likely, for

θ < 180◦, that the patch geometry allows the particles to wiggle around without breaking

bonds, at low temperatures, allowing for sufficient displacement, especially for trimers and

tetramers. The decorrelation of energy per particle is thus more informative. Fig S1b

suggests that for all θ, the sampling down to β ∼ 10− 15 is adequate. Note that for some of

these systems, Ce(t) for higher β are not reported, as the energy per particle does not change

sufficiently to allow for the calculation of Ce(t). Also note that increasing M increases the

autocorrelation time, as seen in Fig. S2. This is expected, as increasing M increases the
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average stickiness of the patches.

(a)

(b)

Figure S1: (a) Autocorrelation functions for particle positions, Cp(t), for various β and θ
values. (b) Autocorrelation functions for energy per particle, Ce(t). The legends show τα
values extracted from exponential fits to the data. The black dashed lines show exp(−1),
the intersection of which with the autocorrelation functions roughly corresponds to t ∼ τα.

Similarly, Fig S3 shows Cp(t) and Ce(t) for simulations with different σε. σε does not seem

to have an effect on the relaxation timescales, but as σε increases, the fraction of particles

that do not decorrelate from their positions during the simulation (as indicated by the tail

value of Cp(t)) decreases. This is consistent with there being a few, less attractive patches in

the ε distribution. While the relaxation timescales suggest that all β are sufficiently sampled

by our simulations, the fraction of stuck particles is non-negligible at higher β. We thus treat

the results of these simulations as structures representative of the gel.

Radial Distribution Functions and Structure Factors

As ϕ increases, the peak heights in g(r), as well as the trough depths, decrease (Fig. S4). At

a first glance this might be counterintuitive, as the average coordination number at a given

distance r is expected to grow with ϕ. The running coordination number, N(r), gives the
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Figure S2: (a) Autocorrelation functions for particle positions, Cp(t), for various β and M
values, for θ = 120.3◦. (b) Autocorrelation functions for energy per particle, Ce(t) for the
same systems. The legends show τα values extracted from exponential fits to the data. The
black dashed lines show exp(−1), the intersection of which with the autocorrelation functions
roughly corresponds to t ∼ τα.

Figure S3: (a) Autocorrelation functions for particle positions, Cp(t), for θ = 120.3◦, M =
2.1, and N = 1024 for different σε values. (b) Autocorrelation functions for energy per
particle, Ce(t). The legends show τα values extracted from exponential fits to the data. The
black dashed lines show exp(−1), the intersection of which with the autocorrelation functions
roughly corresponds to t ∼ τα.
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average number of particles within a distance r from a particle in the system, and is defined

as

N(r) = 4πρ

∫ r

0

g(r′)r′2dr′. (3)

The coordination numbers starting from the nearest neighbor peak in g(r) are higher for

denser systems, as expected (Fig. S5(a)). While this holds for all M , the difference between

the N(r) curves is a bit diminished for larger M (Fig. S5(b)) Since we are at very low

temperatures, the number of nearest neighbors of a given particle is dictated by the average

valence of the system. For sufficiently high densities, this number is also contributed to

by clusters that are close to each other. Or, if the connectivity of clusters allows it, the

proximity of chains within the cluster can also increase the first coordination number. The

average valence and the cluster geometry may thus limit the coordination number increase

with increasing ϕ, in comparison with a fluid.

In addition, the suppression in height (and depth) of peaks (troughs) in g(r) for high ϕ

suggests that the analyzed systems have smaller density fluctuations. This observation is in

line with the fact that the density fluctuations should decrease as one moves away from the

binodal.

Further, as noted in the main text, the geometric predictions for the location of the

next-nearest neighbor peak breaks down as M is increased (Fig. S7).

Finally, Fig. S8 shows the structure factors for M = 2.1 for all ϕ and four different θ

values. As mentioned in the main text, an additional peak or shoulder emerges at around

q = 0.03Å−1 for smaller θ, and becomes more pronounced as ϕ increases.
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Figure S4: Radial distribution functions for different θ, M values, comparing the effect of ϕ.
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Figure S5: Coordination numbers as calculated by integrating g(r). (a) and (c) show the
effect of ϕ on coordination numbers, for M = 2.1 and M = 2.4, respectively. (b) and (d)
show the effect of M on coordination numbers, for ϕ = 0.03 and ϕ = 0.12, respectively.
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Figure S6: The effect of M on g(r) for various θ and ϕ.
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Figure S7: Radial distribution functions for ϕ = 0.03 for all θ and M . The geometric
prediction for the location of the second peak in g(r) breaks down for M > 2.2 (insets).

Figure S8: The change in structure factors for M = 2.1 with respect to ϕ, for various θ
values.
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