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ADDTIONAL EXAMPLES OF THE RELATIVE REFLECTANCE RELAXATION CURVES FOR
STRETCHING AND STICKING REGIMES

This section complements an example of the relaxation process for the deflecting regime presented in Fig. 4 bottom.
Fig. S1 left, shows the stretching regime, and Fig. S1 right, the sticking regime.
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Fig. S1. Left: an example of the relaxation process of a single lamella for a sample in the stretching regime, when the field
is switched off. Data points represent the time relaxation of Rrel for 10 consecutive off pulses. A two exponential decay is
fitted to the measurement and two relaxation times are extracted from the fit (short τ1 and long τ2). In order to determine
characteristic relaxation times for the whole sample. this analysis is averaged over several lamellae. Right: an example of the
two exponential relaxation analysis for a sample from the sticking regime. For samples in this regime, the relative reflectance
Rrel rises when the magnetic field is switched off and falls when the magnetic field is switched on. This is a reversed situation
compared to the stretching and deflecting regimes. We explain this by acknowledging, that only small bending occurs before
lamellae sticking begins, not allowing light to deflect from the sides of lamella as described in the main text (Fig. 5). However,
small deflection is still sufficient to cover the dips between lamellae, which typically reflect more light as a result of the ablation
process. Direct laser micromachining exposes CIP particles in the polymer to the surface, allowing for larger light reflection.
Both of these processes help to explain why in sticking regime Rrel rises when lamellae relax to their straight position.

CONTINUUM MECHANICS MODEL FOR LARGE DEFLECTIONS WHEN A COMBINATION OF
BENDING AND BUCKLING POINT FORCES ARE ACTING ON AN EULER-BERNOULLI BEAM

General solution

In our endavour to model large deflections of a magnetoactive elastomer (MAE) lamella we have followed reference
[1]. Because that reference is not peer reviewed, we repeat here the derivation for our specific need and add the
details on calculation of the coefficients that enter the solution scheme. In brief, the calculation procedure performs
the following: We slice the cantilever into equidistant pieces. Next we calculate all the forces (gravity and magnetic
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dipolar forces acting on the particles) native to a particular slice. After that the total force acting on each slice,
because the total force is what ultimately determines the deflection. To calculate the deflection of each slice we use
the general solution we derive below.

In this SI document we will adopt the same geometry and lamella orientation as in [1] in order to make the
comparison easier and because this is how it is implemented in the algorithm. The reason to choose to align the
cantilever along x is calculational convenience to avoid infinite or close to infinite derivative conditions. The reader
should note that compared to the main text of this article this means the x and y coordinates here are switched.
The cantilever has the base at x = L and the tip at x = 0 (see Fig. S2), we assume the deflection in the y direction.
As this is the first step in elucidating the influence of neighbouring lamellae on the deflection, Young’s modulus E is
assumed constant, eventhogh it is known it can drastically increase when MAE is subjected to an external magnetic
field, yet no mathematical model exists for the functional dependence of E on magnetic flux density B. The second
moment of area I for a rectangular cross-section (our case) is constant along x. This enables us to write the primary
differential equation for the deflection in Euler-Bernoulli beam theory, which we aim to solve:

y′′

(1 + (y′)2)3/2
=
M(x, y)

EI
= Ξ(x, y) = αx+ βy, (1)

where the ′ denotes derivative with respect to x and M(x, y) is the total torque. This is a non-linear version of the
more common approximation for small deflections: ẏ = 0. The solution to Eq. 1 for forces acting in both x and y
direction begins with the ansatz Ξ(x, y) = αx + βy. In this ansatz it is already assumed that we only have forces
acting on the Euler-Bernoulli beam and that these forces produce a torque with the levers being the x and y. We
do not include any explicit torques therefore we refer the reader to Eq. 34.1 in [1] for a demonstration on how to
implement explicit torques through intermittent translations specific to each slice which enables to use the solutions
to Eq. 1 that we will outline now.

y

x
y = 0

x = 0 x = L

Fig. S2. A sketch of the cantilever orientation.

We are solving the differental equation:

y′′

(1 + (y′)2)3/2
= αx+ βy. (2)

We will introduce new variables twice, chosen in a way that Eq. 2 becomes analitically manageable. The first set of
new variables u and v is:

u =
α√

α2 + β2
x+

β√
α2 + β2

y,

v =
α√

α2 + β2
x− β√

α2 + β2
y,

(3)

which implies αx + βy =
√
α2 + β2u. Note that, if α = 0 then u = −v = y or if β = 0 then u = v = x, this

transformation becomes pointless, which underscores the importance of the problem at hand to truly have both x and
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y components of the force. Calculating the derivatives needed to insert into Eq. 2 from manipulation of Eqs. 3 yields:

dx

du
= ẋ =

√
α2 + β2

2α
(1 + v̇),

dy

du
= ẏ =

√
α2 + β2

2β
(1− v̇),

dy

dx
= y′ =

α

β

(1− v̇)

(1 + v̇)
,

d2y

dx2 = y′′ = − 4α2

β
√
α2 + β2

v̈

(1 + v̇)3
,

(4)

where we use the dot notation to denote a derivative with respect to u. Left side of Eq. 2 becomes:

y′′

(1 + (y′)2)3/2
= − 4α2β2

(α2 + β2)2
v̈[(

v̇ + β2−α2

β2+α2

)2
+ 1−

(
β2−α2

β2+α2

)2]3/2 . (5)

We introduce another variable θ such that:

v̇ +
β2 − α2

β2 + α2
=

√
1−

(
β2 − α2

β2 + α2

)2

tan θ

v̈ =

√
1−

(
β2 − α2

β2 + α2

)2

(1 + tan2 θ)θ̇.

(6)

We insert Eqs. 6 into Eq. 5:

y′′

(1 + (y′)2)3/2
= − θ̇√

1 + tan2 θ
(7)

which together with Eq. 2 and αx+ βy =
√
α2 + β2u means:

θ̇√
1 + tan2 θ

= ±θ̇ cos θ = −
√
α2 + β2u (8)

and upon integration:

± sin θ = −
∫ √

α2 + β2udu + C1,

cos θ = ±

√
1−

(
−
∫ √

α2 + β2udu + C1

)2 (9)

with C1 being an integration constant. Inserting Eqs. 9 back into the first equation of Eqs. 6 and substituting
tan θ = sin θ

cos θ yields:

v̇ = ±

√
1−

(
β2 − α2

β2 + α2

)2 −
∫ √

α2 + β2udu + C1√
1−

(
−
∫ √

α2 + β2udu + C1
)2 +

α2 − β2

β2 + α2
=

= ±

√
1−

(
β2 − α2

β2 + α2

)2 −
√
α2 + β2 u

2

2 + C1√
1−

(
−
√
α2 + β2 u2

2 + C1
)2 +

α2 − β2

β2 + α2

(10)

and after another integration:

v = ±

√
1−

(
β2 − α2

β2 + α2

)2 ∫ −
√
α2 + β2 u

2

2 + C1√
1−

(
−
√
α2 + β2 u2

2 + C1
)2 du +

α2 − β2

β2 + α2
u+ C2. (11)

Now that we are equipped with Eqs. 10 and 11 we can numerically determine C1 and C2 for each slice by introducing
the correct boundary conditions between slices.
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Determining parameters α and β

We now move from the general solution of Eq. 2 to implementing the solution in a sliced cantilever. Refer to Table I
before reading further. We choose the number of slices Nslices we would like to have and make equidistant slices of

lamella height L = 300µm Marked h in the main text Fig. 1.
lamella base width b = 70µm Marked w in the main text Fig. 1.
lamella base length l = 30µm Marked l in the main text Fig. 1. We do not take the full

lamella length because we are interested how a narrow sec-
tion of lamella interacts with the neighbouring lamella. This
empowers us to make conclusions about the frustration of
long lamellar structures.

lamella total volume V = 6.3 · 10−13 m3 V = Lbl

second moment of area I = 8.575 · 10−17 m4 Rectangular base, rotation along the l direction, I = b3l
12

.
elastomer density ρE = 0.965 g cm−3 Material is polydimethylsiloxane (PDMS).
elastomer Youngs’ modulus E0 = 45 kPa A typical value for MAE.
particle density ρP = 7.874 g cm−3 Material is iron.
particle radius rP = 2.25µm We make the simplification of a fixed particle radius instead

of a particular distribution.
particle percentage by mass (weight
percentage) in MAE

ww = 75 wt%

single particle volume VP1 = 4.771 · 10−17 m3 VP1 = 4
3
πr3P

single particle mass mP1 = 3.757 · 10−13 kg mP1 = ρPVP1

number of particles NP = 3549 NP = wwρEV
(ρP−ww(ρP−ρE))VP1

, derived from ww definition ww =
NPmP1

NPmP1+ρE(V−NP VP1)
.

volume of all particles inside lamella VP = 1.693 · 10−13 m3 VP = NPVP1

particle percentage by volume wV = 26.88 V% wV = VP
V

lamella total mass m = 1.778 · 10−9 kg m = ρPVP + ρE(V − VP )
gravitational constant g = 9.81 m s−2

vacuum magnetic permeability µ0 = 4π · 10−7 H m−1

mg
E0I

= 2 · 104 m−2 The contribution to the deflecting parameter α coming from
gravity.

µ0m
2
n

E0I
= 10−17 m2 The amplitude of the contribution to both deflecting param-

eters α and β coming from magnetic dipolar forces. The val-
ues that enter α and β also depend on the distance between
particles belonging to different (neighboring) lamellae (see
Eq. 12). In the next step of the development of this model,
the induced magnetic moment mn at specific B should be
calculated from the magnetization curve. This step should
be performed together with: (1) taking into account demag-
netizing factors, and (2) implementation of E0 dependance
on B. Both were neglected at this initial point of the devel-
opment of the model as they deserve a separate dedicated
investigation. This is why we do not to speculate on any B
dependance at this point. Nevertheless a qualitative expla-
nation of the observed lamellar frustration is still possible as
well as pitch functional dependence and the effect of different
random particle configurations can be explained.

µ0m
2
n

E0Ip4
= 0.02 m−2 The amplitude of the contribution to both deflecting param-

eters α and β coming from the magnetic dipolar force, addi-
tionally normalized by the distance between the neighbour-
ing lamellae, i.e. pitch p = 150 µm used in calculations for
the histogram in Fig. 2d. Note that this is for one pair of
particles only and for the final dipolar force we still sum over
all the pairs between the particle inside the deflecting lamela
and the neighbourhood, and then over all particles within
the slice.

TABLE I. Parameters used in the simulation with comments.
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length Li = L/Nslices, where i denotes the i-th slice. The force native to each slice comes from two sources. One

is gravity according to our cantilever orientation ~Fgi = (mig, 0), where mi is the mass of each slice determined from
mi = m/Nslices. In our case this force only has x component and only contributes to α with mig

E0I
. The second force

source is the magnetic dipolar force between two particles, which for convenience we write slightly differently than in
the main text in order to highlight the parameter from Table I entering α and β:

~Fmd
E0I

=
µ0m

2
n

E0I

3

4πr5

( ~mi

mn
· ~r
)
~mj

mn
+

(
~mj

mn
· ~r
)
~mi

mn
+ ~r −

5
(
~mj

mn
· ~r
)(

~mi

mn
· ~r
)

r2
~r

 , (12)

where we already assumed that magnetic moment is only induced along B direction and that the magnitude mn is
the same for ~mi particles inside the deflecting lamella slice i and for ~mj particles inside the neighbouring lamella/e
(all of them, we do not slice the neighbourhood). This would be true when particles are saturated. The contribution
of this force for each particle is summed over all neighbours, which in our simplification are only the particles from
the neighbouring lamella/e and not the particles within the same lamella. Then the total magnetic dipolar force
native to the slice is a sum of all the magnetic dipolar forces acting on individual particles within the slice. Here lies
the essence of our analysis as each particle configuration is unique and the deflections form a histogram reported in
Fig. 2d in the main text. It has components in x and y directions contributing to α and β native to a specific slice.
We use the phrase ”force native to the slice” in order to point out a crucial technical detail. Once we have used the
above procedure to collect and sum all the forces (all the dipolar magnetic forces and gravity) into a singular point

force acting on the slice we need to ask, if this is the total force ~Fi acting on the slice i. In order to obtain ~Fi we now
need to add to each force native to the slice in question also the forces native to the slices above it (above meaning
away from the base) and thus obtain the final α and β entering the algorithm. The reason for this is the easiest to
imagine, if we consider for a moment gravity only. Each slice feels the weight of the part of the beam above but not

below. αi and βi will from this point onward refer to
~Fi

E0I
= (αi, βi).

Implementing slice conditions

Each slice i has to satisfy Eg. 2, where we write down the . At the boundary i between two slices i and i − 1 the
coordinates x and y must coincide to ensure continuity. This is coupled with the expectation of a smooth deflection
without breaks in the slope of the deflected cantilever: y′i−1(xi) = y′i(xi). Those two boundary conditions imply also
ui(xi, yi) = ui−1(xi, yi); vi(xi, yi) = vi−1(xi, yi); and v̇i−1(ui) = v̇i(ui).

Slice lengths Li are an input for our algorithm. We can express the slice i length:

Li =
√

∆x2i + ∆y2i = ∆ui

√(
∆xi
∆ui

)2

+

(
∆yi
∆ui

)2

= ∆ui

√(
dx

du

)2

+

(
dy

du

)2

, (13)

where ∆ui = ui+1 − ui and from first and second line in Eq. 4:

Li = (ui+1 − ui)
√
α2
i + β2

i

2

√(
1 + v̇i(ui)

αi

)2

+

(
1− v̇i(ui)

βi

)2

. (14)

From above we can determine the slice ui, by knowing the Li, the next slice ui+1, and v̇i+1(ui) = v̇i(ui). The first
step is to obtain the value of v̇i from Eq. 10:

v̇i(ui) = ±

√
1−

(
β2
i − α2

i

β2
i + α2

i

)2 −
√
α2
i + β2

i
u2
i

2 + C1i√
1−

(
−
√
α2
i + β2

i
u2
i

2 + C1i

)2 +
α2
i − β2

i

β2
i + α2

i

. (15)

Then we obtain C1i by imposing the boundary conditions, starting at the base i = Nslices = n. Because the beam
stays attached perepndicular to the substrate at the base (xn = L, yn = 0) y′n(L) = 0 as well as un = αn−1√

α2
n−1+β

2
n−1

L

and from the third line in Eq. 4 we get the condition that enables us to determine C1n :

αn−1
βn−1

(
1− v̇n(un)

1 + v̇n(un)

)
=
αn−1
βn−1

1− v̇n
(

αn−1√
α2

n−1+β
2
n−1

L

)
1 + v̇n

(
αn−1√

α2
n−1+β

2
n−1

L

)
 = 0, (16)
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which together with Eq. 10 offers C1n. Now we can determine C2n because we know the outcome of the integration
of Eq. 11:

vn(un) = un =
αn−1√

α2
n−1 + β2

n−1

L. (17)

For the other slices i we repeat these steps to determine each slice ui, by knowing the Li, the next slice ui+1, and
v̇i+1(ui) = v̇i(ui) to employ condition Eq. 14. The second condition to determine each C1i is equivalent to Eq. 16:

αi+1

βi+1

(
1− v̇i+1(ui)

1 + v̇i+1(ui)

)
=
αi
βi

(
1− v̇i(ui)
1 + v̇i(ui)

)
. (18)

Finally the condition vi(ui) = vi+1(ui) and Eq. 11 determines all C2i and consequently via Eq. 11 also vi become
known. Once we have all ui and vi we use Eq. 3 to obtain all xi and yi.

[1] F. A. Chouery, Exact and numerical solutions for large deflection of elastic non-prismatic beams, FAC Systems INC., WA
(2006).


