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Figure S1. Molar volume (blue triangles) and total Hansen solubility parameter (t, black 

cricles) vs. the number of carbons in n-alkane backbone. The black, filled circles are tabulated 

values, while the open black circles and blue triangles were calculated by group contribution 

method.1  
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Figure S2. Light intensity changes of (a and b) 12HSA/decane and (c and d) 12HSA/octadecane 

mixtures measured by cloud point apparatus at a heating rate of 2°C/min. The transition from (c) 

around 32°C is related with the melting of octadecane crystals. (b and d) highlight the light 

insensitivity at low concentration 
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Stearic Acid/Dodecane Liquidus Line 

The melting point 𝑇𝑚,𝑆𝐴 vs. volume fraction of stearic acid (SA, SA) for stearic acid in dodecane 

was fit to the following equation assuming stearic acid forms a carboxylic acid dimer at all 

measured concentrations, 

𝑇𝑚,𝑆𝐴 =
(

Δ𝐻𝑓,𝑆𝐴−𝑑𝑖𝑚𝑒𝑟
𝑜

𝑅
+𝑟𝑆𝐴−𝑑𝑖𝑚𝑒𝑟𝜙𝑆

2𝐴)

𝜙𝑆𝐴−1−𝑙𝑛𝜙𝑆𝐴+
𝑟𝑆𝐴−𝑑𝑖𝑚𝑒𝑟

𝑟𝑆
𝜙𝑠−𝑟𝑆𝐴−𝑑𝑖𝑚𝑒𝑟𝜙𝑆

2𝐵+
Δ𝐻𝑓,𝑆𝐴−𝑑𝑖𝑚𝑒𝑟

𝑜

𝑅𝑇𝑚,𝑆𝐴
𝑜

    (S1) 

where Δ𝐻𝑓,𝑆𝐴−𝑑𝑖𝑚𝑒𝑟
𝑜 = 2Δ𝐻𝑓,𝑆𝐴

𝑜 = 128,560 J/mol based on the reported value of Δ𝐻𝑓
𝑜,2 𝑟𝑆𝐴−𝑑𝑖𝑚𝑒𝑟 is 

the ratio of the molar volume of the SA-dimer to the reference volume (octane), 𝜙𝑠 = 1 − 𝜙𝑆𝐴 is 

the molar volume of the solvent, rS is the ratio of the molar volume of dodecane to the reference 

volume (octane), A and B are the coefficient of the Flory-Huggins interaction parameter, R is the 

gas constant, and 𝑇𝑚,𝑆𝐴
𝑜  is the melting point of pure stearic acid, taken as 344.2 K from cloud 

point measurements. The resulting fit is shown in Figure S3. 

 

 

Figure S3.  Fit of the liquidus line in stearic acid/dodecane solution using equation 12 with B = 0 

and the other fitting constants given in Table 1 of the manuscript. The data points were 

previously reported in ref. 3. Adapted with permission from ref. 3 Copyright 2018 American 

Chemical Society. 
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Derivation of Attenuated Associated Solution Model 

The following derivation follows derivations previously presented by Flory,4 Acree,5 and Painter 

et al.6, 7 The results for the free energy of mixing and the attenuated association model are 

identical to those presented by Painter et al. and the derivation steps are presented here for 

completeness. The general equations for the free energy of mixing and liquidus line are derived 

first followed by specific equations using the attenuated association model. This would allow the 

reader to adapt this model to other associated solute models. The main idea is that the free energy 

of mixing expression for mixing an associated compound A and a solvent B is divided into a 

chemical contribution describing the free energy contributions due to the variation in the degree 

of association of compound A when mixing with solvent B and a physical contribution 

describing the non-specific interactions in mixtures compound A and solvent B.  

The chemical contribution to the free energy change between the mixture of the associated 

compound A and solvent B from the pure liquid, where the pure liquid A has the same 

composition (i.e. molecular weight distribution) of associated species as the mixed phase is, 

Δ𝐺𝑚,𝑐ℎ

𝑅𝑇
= ∑ 𝑛𝐴𝑖

𝑙𝑛𝜙𝐴𝑖
+ 𝑛𝐵𝑙𝑛𝜙𝐵𝑖        (S2) 

where 𝑛𝐴𝑖
 and 𝑛𝐵 are the mole fractions of the associated compound of degree of association i, 

where i=1 is the monomer, and the solvent, respectively, and 𝜙𝐴𝑖
 and 𝜙𝐵 are the volume 

fractions of associated compound and solvent, respectively. 

To compare systems using solvents of different sizes, the molar volume of each solvent, 𝑉𝐴𝑖
 and 

𝑉𝐵, is normalized by a reference volume Vr where, 

 
𝑉𝐴𝑖

𝑉𝑟
= 𝑟𝐴𝑖

 and 
𝑉𝐵

𝑉𝑟
= 𝑟𝐵       (S3-4) 

The volume fractions of each component are given by, 

𝜙𝐴,𝑖 =
𝑟𝐴𝑖

𝑛𝐴𝑖

∑ 𝑟𝐴𝑖
𝑛𝐴𝑖

+𝑟𝐵𝑛𝐵
 𝜙𝐵 =

𝑟𝐵𝑛𝐵

∑ 𝑟𝐴𝑖
𝑛𝐴𝑖

+𝑟𝐵𝑛𝐵
      (S5-6) 

Plugging equations S5 and S6 into equation S2 gives the chemical contribution to the free energy 

of mixing as, 

Δ𝐺𝑚,𝑐ℎ

𝑅𝑇
= ∑ 𝑛𝐴𝑖

𝑙𝑛
𝑟𝐴𝑖

𝑛𝐴𝑖

∑ 𝑟𝐴𝑖
𝑛𝐴𝑖

+𝑟𝐵𝑛𝐵
+ 𝑛𝐵𝑙𝑛

𝑟𝐵𝑛𝐵

∑ 𝑟𝐴𝑖
𝑛𝐴𝑖

+𝑟𝐵𝑛𝐵
𝑖      (S7) 

The chemical potential of component Ai is given by, 

(
𝜇𝐴𝑖

−𝜇𝐴𝑖
•

𝑅𝑇
)

𝑐ℎ

=
𝜕(

Δ𝐺𝑚,𝑐ℎ

𝑅𝑇
)

𝜕𝑛𝐴𝑖

        (S8) 

Where 𝜇𝐴𝑖

•  is the chemical potential of the pure liquid A with the some composition as in the 

mixed phase.  

Writing out equation S7 with a separate term for component Ai gives, 
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Δ𝐺𝑚,𝑐ℎ

𝑅𝑇
= 𝑛𝐴𝑖

𝑙𝑛
𝑟𝐴𝑖

𝑛𝐴𝑖

𝑟𝐴𝑖
𝑛𝐴𝑖

+∑ 𝑟𝐴𝑗
𝑛𝐴𝑗

+𝑟𝐵𝑛𝐵
+ ∑ 𝑛𝐴𝑗

𝑙𝑛
𝑟𝐴𝑗

𝑛𝐴𝑗

𝑟𝐴𝑖
𝑛𝐴𝑖

+∑ 𝑟𝐴𝑗
𝑛𝐴𝑗

+𝑟𝐵𝑛𝐵
+𝑗𝑖   (S9) 

   𝑛𝐵𝑙𝑛
𝑟𝐵𝑛𝐵

𝑟𝐴𝑖
𝑛𝐴𝑖

+∑ 𝑟𝐴𝑗
𝑛𝐴𝑗

+𝑟𝐵𝑛𝐵
  

Differentiating equation S9 with respect to 𝜕𝑛𝐴𝑖
 gives, 

(
𝜇𝐴𝑖

−𝜇𝐴𝑖
•

𝑅𝑇
)

𝑐ℎ

= 𝑙𝑛𝜙𝐴𝑖
+ 𝑛𝐴,𝑖

𝑟𝐴𝑖
𝑛𝐴𝑖

+∑ 𝑟𝐴𝑗
𝑛𝐴𝑗

+𝑟𝐵𝑛𝐵

𝑟𝐴𝑖
𝑛𝐴𝑖

(
𝑟𝐴𝑖

(𝑟𝐴𝑖
𝑛𝐴𝑖

+∑ 𝑟𝐴𝑗
𝑛𝐴𝑗

+𝑟𝐵𝑛𝐵)−𝑟𝐴𝑖
(𝑟𝐴𝑖

𝑛𝐴𝑖
)

(𝑟𝐴𝑖
𝑛𝐴𝑖

+∑ 𝑟𝐴𝑗
𝑛𝐴𝑗

+𝑟𝐵𝑛𝐵)
2 ) +

∑ 𝑛𝐴𝑗𝑗≠𝑖

𝑟𝐴𝑖
𝑛𝐴𝑖

+∑ 𝑟𝐴𝑗
𝑛𝐴𝑗

+𝑟𝐵𝑛𝐵

𝑟𝐴𝑗
𝑛𝐴𝑗

(
−𝑟𝐴𝑖

(𝑟𝐴𝑗
𝑛𝐴𝑗

)

(𝑟𝐴𝑖
𝑛𝐴𝑖

+∑ 𝑟𝐴𝑗
𝑛𝐴𝑗

+𝑟𝐵𝑛𝐵)
2) +

𝑛𝐵

𝑟𝐴𝑖
𝑛𝐴𝑖

+∑ 𝑟𝐴𝑗
𝑛𝐴𝑗

+𝑟𝐵𝑛𝐵

𝑟𝐵𝑛𝐵
(

−𝑟𝐴𝑖
(𝑟𝐵𝑛𝐵)

(𝑟𝐴𝑖
𝑛𝐴𝑖

+∑ 𝑟𝐴𝑗
𝑛𝐴𝑗

+𝑟𝐵𝑛𝐵)
2)     (S10.1) 

  

Through a series of algebraic manipulations equation S10.1 is reduced to equation S10.6, 

 

(
𝜇𝐴𝑖

−𝜇𝐴𝑖
•

𝑅𝑇
)

𝑐ℎ

= 𝑙𝑛𝜙𝐴𝑖
+ (

(∑ 𝑟𝐴𝑗
𝑛𝐴𝑗

+𝑟𝐵𝑛𝐵)

𝑟𝐴𝑖
𝑛𝐴𝑖

+∑ 𝑟𝐴𝑗
𝑛𝐴𝑗

+𝑟𝐵𝑛𝐵
) + ∑ 𝑛𝐴𝑗𝑗≠𝑖 (

−𝑟𝐴𝑖

𝑟𝐴𝑖
𝑛𝐴𝑖

+∑ 𝑟𝐴𝑗
𝑛𝐴𝑗

+𝑟𝐵𝑛𝐵
) +

𝑛𝐵 (
−𝑟𝐴𝑖

𝑟𝐴𝑖
𝑛𝐴𝑖

+∑ 𝑟𝐴𝑗
𝑛𝐴𝑗

+𝑟𝐵𝑛𝐵
)        (S10.2) 

 

 

(
𝜇𝐴𝑖

−𝜇𝐴𝑖
•

𝑅𝑇
)

𝑐ℎ

= 𝑙𝑛𝜙𝐴𝑖
+ (

(∑ 𝑟𝐴𝑗
𝑛𝐴𝑗

+𝑟𝐵𝑛𝐵−𝑟𝐴𝑖
𝑛𝐴𝑖

+𝑟𝐴𝑖
𝑛𝐴𝑖

)

𝑟𝐴𝑖
𝑛𝐴𝑖

+∑ 𝑟𝐴𝑗
𝑛𝐴𝑗

+𝑟𝐵𝑛𝐵
) + ∑ (

−𝑛𝐴𝑗
𝑟𝐴𝑖

𝑟𝐴𝑖
𝑛𝐴𝑖

+∑ 𝑟𝐴𝑗
𝑛𝐴𝑗

+𝑟𝐵𝑛𝐵
)𝑗≠𝑖 +

𝑛𝐵 (
−𝑟𝐴𝑖

𝑟𝐴𝑖
𝑛𝐴𝑖

+∑ 𝑟𝐴𝑗
𝑛𝐴𝑗

+𝑟𝐵𝑛𝐵
)        (S10.3) 

 

(
𝜇𝐴𝑖

−𝜇𝐴𝑖
•

𝑅𝑇
)

𝑐ℎ

= 𝑙𝑛𝜙𝐴𝑖
+ 1 − 𝜙𝐴𝑖

− 𝑟𝐴𝑖
∑

𝜙𝐴𝑗

𝑟𝐴𝑗
𝑗≠𝑖 −

𝑟𝐴𝑖

𝑟𝐵
𝜙𝐵    (S10.4) 

 

(
𝜇𝐴𝑖

−𝜇𝐴𝑖
•

𝑅𝑇
)

𝑐ℎ

= 𝑙𝑛𝜙𝐴𝑖
+ 1 −

𝑟𝐴𝑖

𝑟𝐴𝑖

𝜙𝐴𝑖
− 𝑟𝐴𝑖

∑
𝜙𝐴𝑗

𝑟𝐴𝑗
𝑗≠𝑖 −

𝑟𝐴𝑖

𝑟𝐵
𝜙𝐵    (S10.5) 
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(
𝜇𝐴𝑖

−𝜇𝐴𝑖
•

𝑅𝑇
)

𝑐ℎ

= 𝑙𝑛𝜙𝐴𝑖
+ 1 − 𝑟𝐴𝑖

∑
𝜙𝐴𝑗

𝑟𝐴𝑗
𝑗 −

𝑟𝐴𝑖

𝑟𝐵
𝜙𝐵     (S10.6) 

The volume of 1 true mole of solution, V, is given by, 

 
1

𝑉
= ∑

𝜙𝐴𝑖

𝑟𝐴𝑖
𝑉𝑟

𝑖 +
𝜙𝐵

𝑟𝐵𝑉𝑟
         (S11) 

Equation S11 may be rearranged to, 

𝑉𝑟

𝑉
= ∑

𝜙𝐴𝑖

𝑟𝐴𝑖

+
𝑟𝐴𝜙𝐵

𝑟𝐵
𝑖          (S12) 

Plugging equation S12 into equation S10.6 gives 

(
𝜇𝐴𝑖

−𝜇𝐴𝑖
•

𝑅𝑇
)

𝑐ℎ

= 𝑙𝑛𝜙𝐴𝑖
+ 1 −

𝑟𝐴𝑖
𝑉𝑟

𝑉
       (S13) 

When mixing pure compound A with solvent B, the molecular weight distribution shifts to 

minimize the free energy. To correctly describe the free energy of these mixtures, the chemical 

potential of component Ai needs to be in reference to the pure liquid of compound A, where the 

volume fraction of component Ai is not equal to its volume fraction in the mixed phase (i.e. 

standard state). For the pure liquid in the standard state, the solution volume is, 

 
1

𝑉𝑜 = ∑
𝜙𝐴𝑖

𝑜

𝑟𝐴𝑖
𝑉𝑟

𝑖           (S14) 

Where the superscript o represents the standard state. 

The chemical potential change of the liquid going from the pure liquid with the same 

composition in the mixture to the pure liquid in the standard state is, 

(
𝜇𝐴𝑖

𝑜 −𝜇𝐴𝑖
•

𝑅𝑇
)

𝑐ℎ

= 𝑙𝑛𝜙𝐴𝑖

𝑜 + 1 −
𝑟𝐴𝑖

𝑉𝑟

𝑉𝑜        (S15) 

Subtracting equation S15 from equation S13 gives the chemical potential change for component 

Ai from the standard state to the mixture as, 

(
𝜇𝐴𝑖

−𝜇𝐴𝑖
𝑜

𝑅𝑇
)

𝑐ℎ

= 𝑙𝑛 (
𝜙𝐴𝑖

𝜙𝐴𝑖
𝑜 ) −

𝑟𝐴𝑖
𝑉𝑟

𝑉
+

𝑟𝐴𝑖
𝑉𝑟

𝑉𝑜       (S16) 

Equation S16 describes the chemical contribution to the chemical potential. The physical 

contribution to the chemical potential can be added using a composition independent interaction 

parameter, such that overall free energy of mixing is given by 

  
Δ𝐺𝑚

𝑅𝑇
= ∑ 𝑛𝐴𝑖

𝑙𝑛𝜙𝐴𝑖
+ 𝑛𝐵𝑙𝑛𝜙𝐵 + 𝑛𝐵𝜙𝐴𝜒𝑖       (S17) 

The physical contribution of the chemical potential of component Ai is given by,  



S8 

 

 (
𝜇𝐴𝑖

−𝜇𝐴𝑖
•

𝑅𝑇
)

𝑝ℎ

=
𝜕(𝑛𝐵𝜙𝐴𝜒)

𝜕𝑛𝐴𝑖

=
𝜕

𝜕𝑛𝐴𝑖

(𝑛𝐵

𝑟𝐴𝑖
𝑛𝐴𝑖

+∑ 𝑟𝐴𝑗
𝑛𝐴𝑗

𝑟𝐴𝑖
𝑛𝐴𝑖

+∑ 𝑟𝐴𝑗
𝑛𝐴𝑗

+𝑟𝐵𝑛𝐵
𝜒)    (S18.1) 

=  𝑛𝐵

𝑟𝐴𝑖
(𝑟𝐴𝑖

𝑛𝐴𝑖
+∑ 𝑟𝐴𝑗

𝑛𝐴𝑗
+𝑟𝐵𝑛𝐵)−𝑟𝐴𝑖

(𝑟𝐴𝑖
𝑛𝐴𝑖

+∑ 𝑟𝐴𝑗
𝑛𝐴𝑗

)

(𝑟𝐴𝑖
𝑛𝐴𝑖

+∑ 𝑟𝐴𝑗
𝑛𝐴𝑗

+𝑟𝐵𝑛𝐵)
2 𝜒   (S18.2) 

 

=  𝑟𝐴𝑖

𝑛𝐵
2

(𝑟𝐴𝑖
𝑛𝐴𝑖

+∑ 𝑟𝐴𝑗
𝑛𝐴𝑗

+𝑟𝐵𝑛𝐵)
2 𝜒     (S18.3) 

= 𝑟𝐴𝑖
𝜙𝐵

2 𝜒         (S18.4) 

Following equations 13-16, the chemical potential change of component A on mixing from the 

standard state including both the chemical and physical contributions is, 

𝜇𝐴𝑖
−𝜇𝐴𝑖

𝑜

𝑅𝑇
= 𝑙𝑛 (

𝜙𝐴𝑖

𝜙𝐴𝑖
𝑜 ) −

𝑟𝐴𝑖
𝑉𝑟

𝑉
+

𝑟𝐴𝑖
𝑉𝑟

𝑉𝑜 +𝑟𝐴𝑖
𝜙𝐵

2𝜒      (S19) 

The chemical potential of component A may be written using the result of Prigogine,8 

 𝜇𝐴 = 𝜇𝐴1
          (S20) 

Using equations S19 and S20, the chemical potential change of component A from the pure 

liquid to the mixture is, 

𝜇𝐴−𝜇𝐴
𝑜

𝑅𝑇
= 𝑙𝑛 (

𝜙𝐴1

𝜙𝐴1
𝑜 ) −

𝑟𝐴1𝑉𝑟

𝑉
+

𝑟𝐴1𝑉𝑟

𝑉𝑜 + 𝑟𝐴1
𝜙𝐵

2 𝜒      (S21) 

   

The liquidus line is given by, 

𝜇𝐴−𝜇𝐴
𝑜

𝑅𝑇𝑚,𝐴
= −

Δ𝐻𝑓,𝐴
𝑜

𝑅
(

1

𝑇𝑚,𝑎
−

1

𝑇𝑚,𝐴
𝑜 )        (S22) 

Where 𝑇𝑚,𝐴 and 𝑇𝑚,𝐴
𝑜  are the melting points of component A of the mixture and the pure 

compounds, respectively.  

Substituting in equation S22 into equation S21 gives a relationship for the melting temperature of 

component A as a function 𝜙𝐵 as, 

1

𝑇𝑚,𝐴
−

1

𝑇𝑚,𝐴
𝑜 = −

𝑅

Δ𝐻𝑓,𝐴
𝑜 (𝑙𝑛 (

𝜙𝐴1

𝜙𝐴1
𝑜 ) −

𝑟𝐴1𝑉𝑟

𝑉
+

𝑟𝐴1𝑉𝑟

𝑉𝑜
+ 𝑟𝐴1

𝜙𝐵
2 𝜒)    (S27) 

This is a general equation for the liquidus line. To fit experimental data either additional data or a 

model for molecular weight distribution of  𝜙𝐴 vs. composition is needed for the values of 

𝜙𝐴1
vs. 𝜙𝐵 and 𝜙𝐴1

𝑜 . An attenuated association model is presented that is a modification of a 

continuous association model. 

The reaction equilibrium for a continuous association model in terms of concentration is, 
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𝐶𝐴𝑖
 +  𝐶𝐴1

 ⇌  𝐶𝐴𝑖+1
         (S28) 

The associated equilibrium constant is, 

𝐾′ =
𝐶𝐴𝑖+1

𝐶𝐴𝑖
𝐶𝐴1

          (S29) 

This can be expressed in terms of volume fraction using  

𝜙𝑖 =
𝑛𝑖𝑉𝑖

𝑉
= 𝐶𝑖𝑉𝑖          (S30) 

Substituting in 𝐶𝐴𝑖
= 𝜙𝐴𝑖

/𝑉𝐴𝑖
 into equation S29 gives, 

𝐾′ =
𝜙𝐴𝑖+1

/𝑉𝐴𝑖+1

(𝜙𝐴𝑖
/𝑉𝐴𝑖

)(𝜙𝐴1/𝑉𝐴1)
=

𝜙𝐴𝑖+1

𝜙𝐴𝑖
𝜙𝐴1

𝑉𝐴1𝑉𝐴1𝑖

𝑉𝐴1(𝑖+1)
=

𝜙𝐴𝑖+1

𝜙𝐴𝑖
𝜙𝐴1

𝑖

𝑖+1
𝑉𝐴1

    (S31) 

Normalizing K’ by the molar volume of the monomer gives, 

𝐾 =
𝐾′

𝑉𝐴1

=
𝜙𝐴𝑖+1

𝜙𝐴𝑖
𝜙𝐴1

𝑖

𝑖+1
         (S32) 

An attenuated association model is given by  

𝐾

𝑖+1
=

𝜙𝐴𝑖+1

𝜙𝐴𝑖
𝜙𝐴1

𝑖

𝑖+1
         (S33) 

Solving for different concentrations gives, 

𝜙𝐴2
= 𝐾𝜙𝐴1

2           (S34) 

𝜙𝐴3
=

𝐾𝜙𝐴𝑖
𝜙𝐴2

2
=

𝐾2𝜙𝐴1
3

2
        (S35) 

𝜙𝐴4
=

𝐾𝜙𝐴𝑖
𝜙𝐴3

3
=

𝐾3𝜙𝐴1
4

6
        (S36) 

By inspection of equations S34-S36 the general expression may be written, 

 

𝜙𝐴𝑖
=

𝐾𝑖−1𝜙𝐴1
𝑖

(𝑖−1)!
          (S37)  

The overall composition of component A, 𝜙𝐴, is given by the summation of 𝜙𝐴𝑖
 as, 

𝜙𝐴 = ∑ 𝜙𝐴𝑖𝑖=1 = ∑
𝐾𝑖−1𝜙𝐴1

𝑖

(𝑖−1)!
= ∑

𝜙𝐴1(𝐾𝜙𝐴1)𝑖−1

(𝑖−1)!
=𝑖=1𝑖=1 ∑

𝜙𝐴1(𝐾𝜙𝐴1)𝑖

(𝑖)!𝑖=0   (S38) 

The summation in equation S38 may be rewritten using the Taylor series expansion for the 

exponential function, 

 𝑒𝑥 = ∑
𝑥𝑖

𝑖!𝑖=0           (S39) 

Applying this to equation S38 gives gives, 
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𝜙𝐴 = 𝜙𝐴1
exp ( 𝐾𝜙𝐴1

)        (S40) 

Returning to the Flory-Huggins model, the main equations to use are equations S11 and S27 

1

𝑇𝑚,𝐴
−

1

𝑇𝑚,𝐴
𝑜 = −

𝑅

Δ𝐻𝑓,𝐴
𝑜 (𝑙𝑛 (

𝜙𝐴1

𝜙𝐴1
𝑜 ) −

𝑟𝐴1𝑉𝑟

𝑉
+

𝑟𝐴1𝑉𝑟

𝑉𝑜 + 𝑟𝐴1
𝜙𝐵

2 𝜒)    (S27) 

1

𝑉
= ∑

𝜙𝐴𝑖

𝑟𝐴𝑖
𝑉𝑟

𝑖 +
𝜙𝐵

𝑟𝐵𝑉𝑟
         (S11) 

Using equations S38 and S11, equation S11 may be rewritten as, 

𝑟𝐴1𝑉𝑟

𝑉
= ∑

𝜙𝐴𝑖

𝑖𝑖=1 +
𝑟𝐴1𝜙𝐵

𝑟𝐵
= ∑

𝐾𝑖−1𝜙𝐴1
𝑖

𝑖(𝑖−1)!
+

𝜙𝐵

𝑟𝐵
=

1

𝐾
∑

𝐾𝑖𝜙𝐴1
𝑖

𝑖!
+

𝑟𝐴1𝜙𝐵

𝑟𝐵
𝑖=1𝑖=1   (S41.1) 

=
1

𝐾
∑

𝐾𝑖𝜙𝐴1
𝑖

𝑖!
− 1 +

𝑟𝐴1𝜙𝐵

𝑟𝐵
=𝑖=0  

1

𝐾
(exp(𝐾𝜙𝐴𝑖

) − 1) +
𝑟𝐴1𝜙𝐵

𝑟𝐵
   (S41.2) 

 

Similarly, equation S11 in the case of 𝜙𝐵 = 1 is, 

𝑟𝐴1𝑉𝑟

𝑉𝑜 = ∑
𝜙𝐴𝑖

𝑜

𝑖𝑖=1 = ∑
𝐾𝑖−1𝜙𝐴1

𝑜 𝑖

𝑖(𝑖−1)!
=

1

𝐾
∑

(𝐾𝜙𝐴1
𝑜 )

𝑖

𝑖!
=𝑖=1𝑖=1

1

𝐾
∑

(𝐾𝜙𝐴1
𝑜 )

𝑖

𝑖!
− 1𝑖=0   (S42.1) 

=
1

𝐾
(exp(𝐾𝜙𝐴1

𝑜 ) − 1)        (S42.2) 

 

Plugging equations S41 and S42 into equation S27 gives an expression for the liquidus line as,  

1

𝑇𝑚,𝐴
−

1

𝑇𝑚,𝐴
𝑜 = −

𝑅

Δ𝐻𝑓,𝐴
𝑜 (𝑙𝑛 (

𝜙𝐴1

𝜙𝐴1
𝑜 ) −

1

𝐾
exp(𝐾𝜙𝐴1

) −
𝑟𝐴1𝜙𝐵

𝑟𝐵
+

1

𝐾
exp(𝐾𝜙𝐴1

𝑜 ) + 𝑟𝐴1
𝜙𝐵

2𝜒)  (S43)  

Using 𝜒 =
𝐴

𝑇
+ 𝐵 and rearranging gives, 

𝑇𝑚,𝐴 =
(

Δ𝐻𝑓,𝐴
𝑜

𝑅
+𝑟𝐴1𝜙𝐵

2 𝐴)

1

𝐾
exp(𝐾𝜙𝐴1)−

1

𝐾
exp(𝐾𝜙𝐴1

𝑜 )−𝑙𝑛(
𝜙𝐴1
𝜙𝐴1

𝑜 )+
𝑟𝐴1

𝜙𝐵

𝑟𝐵
−𝑟𝐴1𝜙𝐵

2 𝐵+
Δ𝐻𝑓,𝐴

𝑜

𝑅𝑇𝑚,𝐴
𝑜

    (S44) 
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