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Theory

Giesekus and linear PTT equation under high Weissenberg creeping
flow limit

To show that the upper convected derivative is the predominant term in high Wi low Re flows
as proposed by Renardy! we decompose the stress tensor under quasi-steady assumption such
that we are able to look at the magnitude of individual component in Eq (4) of manuscript
in elasticity dominated regime.

Eq (4) under high Wi creep flow and quasi-steady assumption is simplified to S-1 Giesekus:

T * +ktr(T)* T = 0 (S-1 PTT)

T % +AT T =0 (S-1 Giesekus)



The analysis presented is for a two-dimensional plane. The velocity vector in 2D can be
defined as v := (u,v). We use this to create a symmetric tensor 7" := vev. Next we define a
vector w such that v xw =1 and v-w = 0. Using this we find w = (-7’5, == ). Similar to
v we use w to define another symmetric tensor 72 := w ® w. Using v and w we can define
a third symmetric tensor as T? :=ve®w+w® V.

Stress tensor 7 is symmetric, second-order tensor with rank= 3 and it can be written in

the basis spanned by the three tensors 71, T2, T3 as:

7=aT' + BT? +yT3; where a, 3,andy are functions of (x,y) (S-2)

On substituting this decomposition of stress tensor in Eq (S-1), individual terms can be
simplified to obtain three new equations owing to the linear independence of basis tensors.

Few of the key results that will be important to proceed ahead:

v.w =0 < vw; =0, w.w = W < wyw; = IIVIHQ’ v.v = [|[V][2 < v = V]

The first term of eq (1) 7+ has three sub-terms. Note we will drop stars from now on for

ease of notations.

o V.VT = g;; v, when double contracted with v ® v we obtain: 274
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While expanding the derivative, we have dropped the terms corresponding to orthogo-

nality of v,w

= |v[I'va.v + 2|v|Pa((Vv)v).v + 29[[v]P (VW) V).V



e (Vv)T when double contracted with v ® v we obtain: g—:;Tk]‘Uin
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= ||v||2(a((vV)v).v +”)/((VV)W).V)

e rtr(T)T when double contracted with v ® v we obtain: k770,05

KTk Tij0iV; = k(Ui + fwwy + v (vpwy + wivy) ) (avvj + fww; + v (vw; + wv;) ) vv;

= w|[vI[*alal[vI[* + B[wl*)
e A1t when double contracted with vev we obtain: A7;7yv,0,=A(a2|[v]|2+72||w]|?)||v][*

On putting all terms corresponding to Linear PTT together:

VIV a.v + 29[V (VW) v).v = (Vv)w).v) + [Iv][*ar(a]lv][* + Blw][*) = 0 (S-3)



((vw)v).v = ((VV)w).v)

e +ar(allvIP + Blw*) =0 (S-4)

(V.V)a + 27y

Similarly we will repeat the exercise but this time take a double contraction with w ® w
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While expanding the derivative, we again drop the terms corresponding to orthogonality

of v,w
= [[WlI'VA.v + 2[wIPB((VW)v).w + 29 [[v][*((VVv)v).w
e (Vv)T when double contracted with w ® w we obtain: %Tkjwiwj

ﬁvi avi
—— T Ww; = ww;—— (Rv; + fww; + y(vpw; + wiv;))
8$k axk

- ||W||2(ﬁ((VV)W).W + ’y((VV)V).W)

e 7(Vv)? when double contracted with w ® w we obtain: Tik%wiw»
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k k
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e rtr(T)T when double contracted with w ® w we obtain: K7j,7;;w;w;

KTk TiWiw; = k(ugvy, + Bwgwy, + y(vgwy, + wivg) ) (avv; + fw;w; + 5 (v;w; + w;v;) )w;w;

= llwl*B(al[vI[* + Bllwl[*)
e A7t when double contracted with wew we obtain: A7, m;w;w,;=A(B?||w|]2+v2||v|]?)||w|*

On putting all terms corresponding to Linear PTT together:

W'V B.v + 28wl (Vw)v).w = (VV)w).w) + [[w]|*Br (el [vIP* + B[[w]*) =0 (S-5)

(VwW)v).w - ((Vv)w).w)
Ingl

(v.V)B+28 + Br(allvlP + Blwl*) = 0 (S-6)

For the final equation we will double contract with: vew+we® v
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While expanding the derivative, we again drop the terms corresponding to orthogonality

of v,w

= 2|v[Pa(vv)v.w + 2wl B((VW)v).v + 2|vI[*[Iw]*((V7y).v)+

29wl ((VV)v).v + 29|IV[P((Vw)v).w

e (Vv)T when double contracted with v ® w + w ® v we obtain: g”l T (Viw; + w;v;)

dvi
8xk

ov;
T (viw; + wv;) = (vw; + wivj)a#(avkvj + Bwrw; + y(vpw; + wiv;))
k

= [[wl*(B((VV)W) v + 7 ((VV)v).¥) + [[V][* (@((VV)v). W + 7 ((VV)W).W)

e 7(Vv)? when double contracted with v ® w + w ® v we obtain: Tik%(viwj +Ww;v;)

ov; ov;

Tik—— B, (v,w] +w;vy) = (vwj +wv;) (avy + fw;wy + y(viwy + w,vk))7
k

= [V (a((vv)v) W + 7 ((Vv)w).w) + [[w]*(B((VV)W).v + 7 ((VV)V) v)

e rtr(T)T when double contracted with v® w + w ® v we obtain: k7,7, (v,w; + w;v;)

KTk Tij (Viw+w;v;) = K(QURUE+Bwrwi+y (Vpwg+wivy ) ) (v v+ Bw;w;+y(vwj+w;v;) ) (viw+w;v;)



= 26y (alvI[* + Bliwl*)[IvI[*|wl*

o A7T when double contracted with vew+w®v we obtain: A7, 7y; (viw;+w;v;)=A(2ay|[v]|*+

26wl IvIllwl®

On putting all terms corresponding to Linear PTT together:

VI ([WI*9 v + B[wl (VW) v).v = (V) w).v) + AIVIF (VW) V). w = ((Tv)w).w)

+ry(al v + BlIwlP)IvI[[wl]* = 0 (S-7)

((vw)v).v-((Vv)w).v) . ((vw)v).w - ((Vv)w).w)
[v][? [[wl[?

(v.V)v+8

ry(allvl[? + Bllwl*) = 0 (S-8)

Before proceeding ahead we will drive some sub-parts for final simplification. We know
that ||v|?|[w]||? = 1 this in tensorial notation is v;v;w;w; = 1. Taking gradient of this expression

gives

21},;3—;;10]-10]- +2w; %w]:vivi =0 Taking dot with v
(vw)v).wl[v][> + ((Vv)v).v][w]]* = 0 (5-9)

(WwW)v) w-((VV)w).w .

eq (23) can be used to rewrite WP as:

~(((V)V)-vIIwl?) + ((Fv)w).wilv][*)
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At this point we can invoke definitions of individual terms and the continuity equation

to simplify the result as.

ou Ov ou Ov ov Ou Ov Ju
N 2 2y _ _(, 208 OUy o 0U OV ov odu oOv ou
Therefore we can conclude: (Yw)v).w = (Vv)w).w =0 (S-10)

[w”
eq (S-10) is an important result as it simplies few of the terms in eqs (S-8) and (S-6) to
0. Next we look at v;w; = 0. Taking gradient of the expression, followed by a dot product

with v gives:

(VW)V).v+(Vv)v).w=0

This result can be used to rewrite the expression:

(VW)V).v = ((TV)W).v _ _( (VV)V).w + ((vv)w).v)

Il VI

Similar to previous case we substitute the values of individual terms to obtain:

~vIP

1 Ou o OV o 9 OV o 5 0u
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The above expression is :

P SN SN I
lZuv 2uw (u U)&c (u U)ay =V.w (S-11)

vl oz dy

This result can be obtained by finding divergence of w using its definition. Finally we

use eq (S-10) and eq (S-11) to simplify eq (S-8), (S-6), and (S-4) to get:



(v.V)a + 29V.w + ar(af|v]]* + B||w|*) = 0 (S-12)

(v.v) B+ Br(al[vI[* + Bllw|[*) = 0 (5-13)

(v.V)y +BV.w+ ry(alv]® + Blwl[*) = 0 (S-14)

Similarly terms in Geisekus are combined to give:

(v.V)a +29V.w + A(P V| + 92| |w|*) = 0 (S-15)
(v.V)B + A(B? W] +4[vI[*) =0 (S-16)
(v.V)y + BV.w + A(ar|[VI]? + BAllw][*) = 0 (S-17)

Combined eq (S-12), (S-13), (S-14) is the final form of governing equation for the stress

tensor 7 following linear PTT constitutive law under high W4 flow.

The term v.V is a scalar operator that returns the rate of change of the corresponding
input variable along the streamline. In eq (S-13) the term s(«l|v|]?> + 5]|w||?) corresponds to
the trace of stress tensor 7 and is always positive. Therefore, in eq (S-13) 8 has to mono-
tonically decrease along a streamline. This is not always physical for instance, in closed
streamline flows or even for open streamline flows it requires very large value of 5 upstream
to ensure non-negative values of 3. Using this argument we observe that = 0 is the only
value that always satisfies eq (S-13) without any loss of physical sense. Now on substituting

f =0 in eq (S-14) we again refer to our previous argument to conclude v = 0 which then can



be substituted in eq (S-12) to conclude v = 0. Similarly we can use the above arguments in
eq (S-15), (S-16) and, (S-17) to conclude a = 8 = = 0. Having functions «, 3, all equal to
zero implies that the stess tensor 7 = 0. This result is physically unacceptable as it implies

0 stress for non stationary flow.

Therefore, we can conclude that the terms corresponding to the tr(7)7T and 77 are
giving physically inconsistent results suggesting to drop them entirely from the equations.
Physically it means that the order of the term ktr(7)T and A7T are lesser than the upper
convected term. Retaining the term by assuming it to have the same order as the upper
convected term is physically not possible as it means 0 stresses. In conclusion, at High W73

limit 7# = 0 is the final dimensionless form of the constitutive law.

Derivation of Eq (10)

The mass and momentum equation for the quasi-radial, quasi-steady, and axis symmetric

flow conditions are given below with u, :=u and u, = v.

ou Ov u
54‘%4’;—0 (1)

au _ ap 87_7»7‘ TT’T 87—7‘2
o) ="ar o * 5t (22)
0. P 9% T 0T (2b)

0z 0z r or
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Following are the components of Lower convected derivative in low Re and high Wi flow

under axis symmetric assumption:

OTyr du _nou
or T e or 2)\ or (32)
0T, du  _nou
R R WX (3b)
0T Trw
U U =0 (3c)

To non dimensionalize the above equations we use the following scheme: u* = u/U,, r* =1/ R,,
2* = 2|7, t* =t|T., 7. = Tpr [ Tye and 7%, = T, [Toe, Where T, := R.JU,, U, R. = R,, Z. = R?|R,
, Tr. and T,. are the characteristic time, velocity, lengths and stresses respectively. Here
U, :=~/n/pA is the shear wave velocity, 7,. = n/\ is shear modulus, Z, = R,/2, T.c = Tpe/Wi,
with Wi, = AU./R,, and P, = /R, is the characteristic pressure. On substituting these in

Eq set 3a and 3c, we obtain:

oTx ou* ou*
* rr 2 * — 4
Y or* " TTT@T* or* (4a)
8,7_* 7_*
* rz _ * 'TZ :O 4b
U e U p- (4b)

On integrating along r direction in z = 0 plane, the dimensionless rr and rz components of

stress tensor are:

=14 K f(u)? (50)

T, = Kor” (5b)

Here, K; and K, are dimensionless integrating constants which in general are functions of z

locally. Further the radial momentum equation is simplified to obtain:

or* _Eo@r* " R, ZCW

pU? u*au* _ Popt T %+T_72; +7'ZC(97':Z
R, or*s r*
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P 9p* : Ry — + — (L 2
First term on RHS &g can be rewritten as mq 2 with p* = (R* +

scaling coefficient.

pUE\ 0w o L (1 2R, ) ree(Orh T 7e OT .
R, or* leR* R (R*)?R,) R,\O0r* r* 7. 8z
SO oh L1 2\ (om w2 om
or "R, B\ R (@) o e T Wi e

Further my and ms defined here as the scaling coefficients of elastic and viscous terms

respectively along with r* ~ R* = R/R,, z* ~ Z* = (R/R,)* u* ~ U*

= U/U, are introduced
to obtain the scaled equation for neck evolution.

(U2 _ oA 1(1 2 )+ T*

m +—— |+ mo— 2ms 77 (7)
R "R, R*\ R*  (R*)? >R T Wi, 2

From Eq 8a 77 ~ 1+ K /(U*)? ~ K{(1+1/(U*)?) as 1/U* is the dominant term and the new

scaling coefficient K| will adjust the minor contributions by 1/K; term similarly Eq 5b gives
7k, ~ Ko R*. These when substituted in Eq 7 gives:

(U*)?2 1(1 2\, M 1 9M; R*
=M 1+ — 8

R* 1R>(— (R*)Z ( (U*)Q) WZC 7* ( )
Here M; := my 77%\ = -, My = maK7, and Mj := m3K, are the final scaling coefficients
that have absorbed all the previous parameters

. Eq 8 is simplified further to obtain the
dimensionless neck evolution equation as :

- 12 120
(U") _M1(§+W)+M2(l+(U*)2) Wi,

(U*)4—(M1(%+ﬁ) M2+?/3/Z[i)(U*)2 M;=0 (9)
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Experimental setup validation
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Figure S1: Neck radius evolution of DI water.

Power law fit
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Figure S2: Temporal evolution of neck radius in the region of interest for different experi-
mental trials of ¢/c* = 18.47,25.61.
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Figure S3: Power law fitting for different ROIs.

Constants and Dimensionless numbers
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Figure S4: Variation of characteristic time 7T, with ¢/c¢* across molecular weights.
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Figure S5: Variation of non-dimensional numbers Re and Wi with time for PEO of (a)
M, =6x10% and (b) M, =1x10° g/mol.

Figure S6: Flow chart represent the algorithm to obtain M; values.
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Figure S7: (a) Variation of M; with Fc_; and (b) Variation of b with Ec_; across molecular
weights.

/T,

Figure S8: Comparison of dimensionless neck radius evolution obtained from experiments
with solution of Eq (10) for various ¢/¢* of PAM M,, =5x 106 g/mol. (obtained from Varma
et al.?).
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Arrested Coalescence

Analysis
M2(1+ 2i )
My = (10)
R T (B)?

The term in denominator O(ﬁ) > (’)(ﬁ) therefore we can neglect the lower order term
to get an approximate value for 0y, ese. Similarly in numerator 1> 2/Wi, for high elasticity
droplets(that will show arrest)

my (R 62

arrest

_EC_lMQ - 2 2
20

EC_1 = Varrest

(11)

DI Water

R(t=0.5ms) =0.41 mm and R(¢ =3 ms) = 0.89 mm

. _ R(t=3 ms)—R(t=0.5 ms)
IDI = TR(#=0.5 ms)(3-0.5)

Apr = 0.47 ms!

PEO M, =1x10° g/mol, c¢/cx =70

R(t=0.5ms) =0.24 mm and R(t=1000 ms) = 0.74 mm

_ R(t=1000 ms)-R(¢=0.5 ms)
= T R(=0.5 ms)(1000-0.5)

P)/arrest

;yarrest =0.002 ms™!

’yarrest/'yDl * 100 = 043%
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o

Figure S9: Schematic of the angle 6 subtended at the neck.
Rheology, Non-Dimensional numbers, Non-Dimensionalising
Variables

The relaxation time A for all the solutions are obtained using the Zimm model* .

__ 1 [nIMuns
*7 ((3v) NakpT

(12)

Here, ns, kg, A,, T', v are solvent viscosity, Boltzmann constant, Zimm relaxation time,
absolute temperature and fractal polymer dimension determined using the relation A = 3v-1,
(where A is the exponent of Mark-Houwink-Sakurada correlation) respectively. The relax-
ation times of the solutions in semi-dilute unentangled Asug and semi-dilute entangled Agg
regimes, are obtained using these correlations : Agyg = )\Z(C%)m and Agg = )\Z<C£*)§,,3i 57

respectively. The values of viscosity, relaxation time and concentration ratios for molecular

weights M, =5 x 105 and 4 x 105 g/mol are obtained from our previous study.?
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