Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

The Structural Changes of a Bovine Casein Micelle during Temperature Change; In situ Observation over a Wide Spatial Scale from Nano to Micrometer

Hideaki Takagi*,¹ Tomoki Nakano, ² Takayoshi Aoki,³ Morimasa Tanimoto^{4,5}

¹ Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-

² Research Division, Minami Nippon Dairy Co-op Co., Ltd., 5282, Takagi, Miyakonojyo, Miyazaki, 885-0003, Japan

³ Professor Emeritus, Kagoshima University, Hoshigamine, Kagoshima, 891-0102, Japan

⁴ Professor Emeritus, University of Yamanashi, 4-4-37, Takeda, Kofu, Yamanashi, 400-8510, Japan

⁵ Department of Food Sciences, Tokyo Seiei College, 1-4-6, Nishishinkoiwa, Katsushika-Ku, Tokyo, 124-8530, Japan

¹ Oho, Tsukuba, Ibaraki, 305-0801, Japan

Table S1. Fraction, molecular weight, chemical formula and electron density of casein proteins.

Casein	%	Molecular weight (g/mol)	Chemical formula	Electron density (e/nm ³)
α_{s1}	38.2	23614	$C_{1035}H_{1595}N_{265}O_{341}S_5P_8$	437.3
$lpha_{ m s2}$	11	25228	$C_{1083}H_{1718}N_{287}O_{371}S_6P_{11}$	437.5
β	39.5	23983	$C_{1080}H_{1697}N_{268}O_{325}S_6P_5$	438.6
К	11.3	19003	$C_{850}H_{1323}N_{222}O_{262}S_4P_1$	438.2

Table S2. Concentration of lactose, β -Lactoglobulin and α -Lactalbumin in skim milk used in this study.

	Concentration g/L
Lactose	47.4
β -Lactoglobulin	4.61
α- Lactalbumin	1.02

Figure S1. USAXS and SAXS profiles of skim milk obtained at 30 °C. Red squares and blue triangles represent USAXS ($0.0016 < q < 0.047 \text{ nm}^{-1}$) and SAXS ($0.017 < q < 1.3 \text{ nm}^{-1}$) data, respectively. The USAXS data in the range of $0.017 < q < 0.047 \text{ nm}^{-1}$ overlapped almost completely.

Figure S2. SAXS profile obtained at 30 °C during the heating process. The solid lines represent the curves calculated using eq. (2). The dashed lines (1)-(3) refer to the contribution of the first three terms in eq. (2)