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SAMPLE PREPARATION AND IMAGING

In order to investigate the geometric and topological
characteristics of disordered rubber band assemblies, we
designed a straightforward experimental setup that en-
abled the preparation and analysis of these systems with
consistent statistical properties. Our method began with
the placement of rubber bands individually into a cylin-
drical container with a diameter of 7.5 cm. We selected
the quantity of bands for each system to achieve compa-
rable packing fractions within the volume defined by the
container’s dimensions.

Once the bands were in place, we mixed the system by
rotating the container around an axis running through
its center of mass. The mixing speed was maintained
at 50 rpm for a duration of 5 minutes. This uncompli-
cated mixing technique resulted in disordered packings
exhibiting consistent geometric and topological statisti-
cal properties.

To enhance system mixing, we utilized a container fea-
turing a movable cap, providing the bands with a larger
rotational volume. Additionally, we applied slight com-
pression to the bands by lowering the cap to a final height
of 7.2 cm. Our observations indicated that adjustments
to mixing speed or duration did not significantly im-
pact packing structure, implying a robust and depend-
able mixing process.

To assess the internal structures of the band packings,
we employed X-ray tomography using a CT-Rex machine
(Fraunhofer EZRT) situated at the Friedrich-Alexander-
Universität. The X-ray source was typically set to 100
kV voltage and 350 µA current, with an exposure time of
150 ms. Tomograms were obtained by rotating the sam-
ple 1,600 times. To enhance the statistical reliability of
our analysis, we imaged and examined three independent
configurations for each type of band considered. With a
voxel resolution of 35 µm, we were able to discern indi-
vidual rubber bands and their positioning within the as-
sembly. Figure 1 displays a representative tomogram of
a structure acquired for band type B, which had a length
of 24.1 cm and a cross-sectional area of 0.024 cm2.

INDIVIDUAL IDENTIFICATION OF BANDS
(SEGMENTATION)

Conventional 3D tomography in our project typically
contains approximately 6 x 108 voxels, arranged in a 3D
matrix with dimensions of around 960 x 960 x 686. In

FIG. 1. Raw data. A typical tomography obtained in this
work (system B).

this section, we discuss the method developed to identify
each band in the assemblies from the raw data.
Initial Binarization. First, we remove the cylin-

drical container from the experimental data. A simple
code enables us to manually set the axis and radius of
the cylinder, clamping any value outside this geometry
to zero. We then perform binarization of the 3D data,
clamping any intensity below a given threshold to zero
and to one otherwise. The entire volume data is bina-
rized by slicing on the z-axis. After testing numerous
schemes to determine the optimal global threshold, we
found Otsu’s method provides the most satisfactory re-
sults.
Segmentation. Segmentation typically involves sepa-

rating an image into objects of interest and non-interest.
In our case, we aim to distinguish each rubber band from
the background and other bands. To achieve this, we
first perform a distance transform on the binarized to-
mograms to convert bright regions into catchment basins
and then apply a watershed transformation [1]. Gen-
erally, the watershed transformation is insufficient for
fully segmenting bands, yielding only segments or parts
of bands. In general, different band pieces must be con-
nected in an iterative paste process to obtain the full
band configurations.
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FIG. 2. Segment skeletonization. For a better manage
the experimental data we use the skeleton transformation to
replace the volumes representing the band’s segments by par-
ticles chains. From the figure, it is clear that the obtained
particle chains correctly locate in the middle of the bands.

In this work, we also explored a Machine Learning
segmentation approach using Convolutional Neural Net-
works (CNNs). CNNs are a type of deep learning net-
work designed to extract characteristic features from im-
ages and volumes [2, 3], typically through a sequence of
convolution, pooling, and up-sampling operations. We
employed the U-Net architecture [4] to segment the to-
mographies. This architecture utilizes a convolution-
deconvolution approach and has been successfully ap-
plied to segmenting both 2D and 3D volumetric data
[5, 6].

For our study, we trained separate U-Net networks for
each type of band. The segmentation masks required
to train the networks were obtained using the previously
developed watershed segmentation approach [7]. For con-
venience, the tomograms were initially divided into sub-
volumes of 1283, and the raw data were then input to the
trained network to determine the probability of a given
voxel being the center of a band. After processing each
subvolume, we reassembled the data in the correct order
and applied a connected component analysis to obtain
the individual configurations of bands. Overall, the Ma-
chine Learning segmentation approach with the U-Net
CNN proved to be slightly more effective than the previ-
ous approach based on the watershed transform. Further
details regarding this segmentation process will be pub-
lished in a separate study.

FIG. 3. Impact of Discretization. With sufficiently fine
discretizations, the geometrical and topological properties of
the bands remain unaffected by the linear chain approxima-
tion. For instance, in this plot, we illustrate the variation in
entanglements within the systems for different levels of band
discretization, achieved by employing various bond lengths.

Discretization of bands. To better manage the
experimental data, we reduce the segmented band vol-
ume/pieces to an array of beads along its backbone us-
ing the skeleton transformation [8]. In this process, each
band piece is replaced by a linear chain of particles, gen-
erally reducing a three-dimensional binary object to a 3D
line one voxel wide. The algorithm is iterative, perform-
ing successive passes on the data. On each pass, border
voxels of the object are identified and removed if they
do not break the connectivity of the original object. We
implement the algorithm reported in Ref. [9], which is
designed for a 3D binary object and uses an octree data
structure to examine a volume of three cubic elements
surrounding a voxel. The algorithm iteratively sweeps
over the image, removing voxels at each iteration un-
til the image stops changing, at which point the process
converges. Each iteration includes two steps: first, a list
of candidates for removal is built; then, voxels from this
list are sequentially rechecked to ensure the preservation
of the object’s connectivity.

While this method is versatile for processing our data
and determining the backbone of the bands, it occasion-
ally introduces spurious deviations of the band skeleton,
contaminating the results. The algorithm often causes
the appearance of short chains branching from the main
backbone, an undesired effect related to the thickness
fluctuations of the bands and a direct consequence of the
binarization threshold. Consequently, we refine the skele-
tonization of the band by implementing an algorithm to
detect and eliminate these short branches, cleaning the
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trunk of the band. Figure 2 demonstrates typical dis-
cretizations of a band type A obtained using our skele-
tonization approach.

Iterative paste. As mentioned earlier, the water-
shed segmentation generally does not fully determine
band configurations but only segments or pieces of bands.
Thus, a fourth step, an iterative segment-paste process,
is required to obtain the full band configurations. In this
step, we connect parts of bands with close endpoints and
with tangent vectors at the endpoints that differ in ori-
entation by approximately 180◦. We also verify that the
new bond formed (if the segments were joined) aligns
with the last bonds of the chains.

To avoid misconnections, this process must be itera-
tive. For a given distance between endpoints and a given
projection of the new bond on the end-tangents, we at-
tempt to link chains with end-tangents misoriented by
approximately 180◦. Once all chains are inspected, we
relax the misorientation and try to link more chains. We
typically progress from around 180◦ to approximately 60◦

in 20 steps. Afterward, we relax the projection of the new
bond (the projection on the new bond typically decreases
from 1 to 0 in 30 steps), and finally, we relax the distance
between the endpoints. In each step where we try to link
two chains, we also check for the length of the joined
chain.

Effects of Discretization. It is important to note
that the discretization of bands as chains of particles is
entirely arbitrary, but it is extremely useful for managing
data and applying different software and codes, mainly
developed for the analysis of molecular dynamics simula-
tions. In this study, we ensured that the discretization of
chains was fine-grained enough so that neither geomet-
ric nor topological properties were altered. We typically

employed a uniform discretization of the bands, with the
bond length in the chain of the order of lb ∼ 1mm. This
bond length was sufficiently small to yield accurate re-
sults. For instance, in Fig. 3, we display the entan-
glements in the different systems, as determined for six
discretizations of the rubber bands. As expected, en-
tanglements generally decrease when increasing the bond
length in the approximation of the band with the chain.
However, as evident from the figure, using bond lengths
on the order of a millimeter ensures robust results for
both geometric and topological properties.
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