1 **Supplementary Materials** Nanoscale effects of TiO2 nanoparticles on the rheological behaviors of ultra-high molecular 2 3 weight polyethylene (UHMWPE) 4 Yang Sui^{a, b}, Yi Cui^{a, b}, Chuanbo Cong^{a, b}, Xiaoyu Meng^{a, b}, Haimu Ye^{a, b}, Qiong Zhou^{a, b}* 5 6 7 The mechanism of the surface modification of nano-TiO₂ by KH570 is shown as scheme 1¹, which is very similar to our previous study². The chemical formula is CH₂=C(CH₃)COO(CH₂)Si(OCH₃)₃ and 8 its reaction with nano-TiO₂ consists of three steps: (1) the -R group attaches to the silicon atom 9 10 hydrolyzes to form Si-OH oligosiloxane; (2) the Si-OH in oligosiloxane forms a hydrogen bond with the -OH on the surface of nano-TiO₂; (3) covalent bond with TiO₂ is formed along with dehydration reaction 11 12 during the heating process.

13

14 Scheme S1. Mechanism of the surface modification of TiO₂ nanoparticles by KH570 (A stands for

15 CH₂=C(CH₃)COO(CH₂) and R is OCH₃)

16

2 Fig. S1. Size distribution of modified (a) 6-10 nm and (b) 70 nm TiO₂ nanoparticles. TEM morphologies

3 images of modified (c) 6-10 nm and (d) 70 nm nanoparticles.

8 Fig. S2. Guinier approximation plot of pure UHMWPE (a) and the UHMWPE/0.3% TiO₂ composite
9 (b).

10

1

11 The natural logarithm of the equation $I(q) = I(0)exp(-R_g^2q^2/3)$ [29] is 12 $ln I(q) = lnI(0) - R_g^2q^2/3$. Then the gyration radius of the sample (R_g) can be calculated through the 13 slope of Guinier approximation plot, that is Slope $= -R_g^2/3$. For pure UHMWPE, 14 $R_g = \sqrt{(-3) \times (-52.65200)} = 12.57$ nm; For UHMWPE/0.3% TiO₂, $R_g = \sqrt{(-3) \times (-41.02029)}$

- 1 = 11.09 nm.
- 2 References:
- 3 1. J. Liu, J. Yu, M. He and S. Lu, Chinese Journal of Colloid & polymer, 2010, 28, 19-21.
- 4 2. Y. Cui, Y. Sui, P. Wei, Y. Lv, C. Cong, X. Meng, H. Ye and Q. Zhou, Nanomaterials, 2023, 13, 1096.
- 5