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I. INTERACTION MODEL AND NUMERICAL SIMULATIONS

We model the interactions between particles with an isotropic interaction potential introduced
by Wang et al. in [1], which is given by

U(r, ε) = εα(rcutoff, σ)

[(σ
r

)2

− 1

]
×
[(rcutoff

r

)2

− 1

]2
(ESI Eq. 1)

if r < rcutoff and zero elsewhere, and where α(rcutoff, σ) fixes U(rmin, ε) = ε. The equilibrium
position rmin is given by the minimum of U(r, ε), which for rcutoff/σ = 1.1 results in rmin/σ ≈ 1.03.
With this potential, the association of substrate/product monomers is diffusion-limited (see Fig. 1B
in the main text). To simulate the irreversible case, i.e., when substrate bond formation is not
allowed, we forbid product particles for which from interacting with each other. Particle valence
is realized by keeping track of the bonds between particles in the system: each catalyst particle
can bind one catalyst particle and one substrate/product particle, while each substrate/product
particle can bind one catalyst and one substrate/product particle at the time. When two particles
come within the interaction range r < rcutoff, they can form a bond if they are of the right type
and if they have not already formed a bond of that type. When the distance between two particles
that cannot interact is r < rmin, they repel via a soft-harmonic potential,

UH(r) =
1

2
k(r − rmin)

2 (ESI Eq. 2)

where we take k = 1000.
We perform Langevin Molecular Dynamics (MD) simulations using an in-house code that imple-

ments a modified velocity-Verlet algorithm to integrate the equations of motion [2]. All simulations
are performed with temperature T = 1.0, friction coefficient γ = 12.5 and time-step ∆t = 10−4

time units, and we used periodic boundary conditions. To simplify the simulations, the rigid bond
in the catalyst is realized by fixing the catalyst particles in space within the simulation box, i.e.,
the catalyst remains immobile during the simulation. To investigate the effect of product inhibition
(Fig. 3C and Fig. 4 in the main text), the side of the simulation box is chosen as L = 2RDiff + σ,
where RDiff is the radius of a disk centered around the catalyst (see ESI Fig. 8). The latter is
placed in the center of the simulation box.

II. MEAN REACTION TIME FOR THE SPONTANEOUS DISSOCIATION

Using MD simulations, we verify that the time it takes the substrate dimer to spontaneously
dissociate into two free product monomers for the first time, that is, the first-passage time to
overcome the interaction potential (see ESI section I), is exponentially distributed (ESI Fig. 1A).
For fixed interaction range rcutoff/σ = 1.1, the rate constant associated with the spontaneous
reaction, defined as the inverse of the mean first-dissociation time [3, 4], kS→P = 1/TS→P , decreases
exponentially with the depth of the potential ε (ESI Fig. 1B). We fit the simulation data with an
Arrhenius-like expression k = e−Aε+B , with A = 0.91 and B = 2.20 ± 0.07 within the range
ε ∈ [3, 17]. Since A < 1, the εcs < Aεs < εs necessary condition for catalysis holds.
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ESI Figure 1. (A) Distribution of first-dissociation times τ obtained from MD simulations for different
potential depths ε, with fixed interaction range rrcutoff/σ = 1.1. The dissociation occurs when the distance
between particles in the substrate dimer, initially at equilibrium r = rmin, exceeds r > rcutoff for the first
time. (B) Logarithm of the dissociation rate k, defined as the inverse of the mean first-dissociation time,
k = 1/ 〈τ〉, as a function of ε. Simulation data (squares) can be fit with an Arrhenius-like expression
ln k = −0.91ε+ 2.20 (dashed line).

III. A SPHERICAL PARTICLE CANNOT CATALYZE THE DISSOCIATION
REACTION

A single spherical particle, i.e. Lc = 0, cannot catalyze a dissociation reaction within our model.
This is shown in ESI Fig. 2A, where we plot the free energy of the system along the substrate
bond rs when the substrate is completely attached to the catalyst, i.e., rcs < rcutoff for the two
substrate-catalyst bonds. We compare two different catalyst designs: a single catalyst particle and
a rigid dimer with Lc > 3rmin. The activation barrier to break the substrate bond in the presence
of a single catalyst particle with εcs/εs = 1 equals the barrier in the absence of the catalyst.
In other words, the interaction between the substrate dimer and the catalyst particle does not
modify the average time to cleave the substrate bond. For the same binding energy, a rigid dimer
satisfying Lc > 3rmin reduces the activation barrier by straining the substrate bond, consequently
accelerating the cleaving of the bond.
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ESI Figure 2. (A) Free energy of the system along the substrate bond rs when the substrate is fully
attached to the catalyst (rcs < rcutoff for both substrate-catalyst bonds) for two catalyst designs: a single
spherical particle (blue line) and a rigid dimer with Lc/3rmin = 1.02 (red line). Simulation parameters
correspond to εs = εcs = 8. (B) Comparison of the mean first-passage times to break the substrate bond
with and without the catalyst, TC:S→C:P\C·S/TS→P , as a function of Lc, where we set εcs = 30 � εs to
avoid unbinding events. Catalysis requires TC:S→C:P\C·S/TS→P < 1. When Lc ≤ 3rmin, all three bonds
in the C:S configuration can exist at equilibrium. This is no longer true when Lc > 3rmin, and as a result,
the substrate bond is strained by the catalyst.
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IV. COMPLEMENTARITY TO THE TRANSITION STATE AND THE Lc > 3rmin
NECESSARY CONDITION FOR THE CATALYST GEOMETRY

Catalysis requires TC:S→C:P\C·S < TS→P , where TC:S→C:P\C·S is a function of the catalyst
geometry Lc, the εcs binding energy and the substrate bond εs. To investigate the effect of Lc

on TC:S→C:P\C·S , we initiate the system in C:S and record the time it takes to reach C:P using
MD simulations. To prevent unbinding events, we set εcs � εs. Simulation results in ESI Fig. 2B
show that catalysis requires Lc/3rmin > 1. In this limit, the C:S configuration is linear and the
catalyst geometry does not allow the three bonds in C:S, namely, the substrate bond and the two
catalyst-substrate bonds, to simultaneously exist at equilibrium. As a consequence, the substrate
bond is strained.

We can approximate the effective barrier for C:S → C:P by

∆UC:S→C:P = 2U

(
Lc − rcutoff

2
, εcs

)
−

min
r∗s ,r

∗
cs

[
U(rs, εs) + U(rcs, εcs) + U(Lc − rs − rcs, εcs)

]
, (ESI Eq. 3)

where rs represents the substrate bond length, rcs the substrate-catalyst bond length, the first
term in the equation is the potential energy for rs = rcutoff, i.e., when the substrate is at the
transition state, and the second term is the minimum of the potential energy when the substrate
is completely attached to the catalyst. The same approach for the effective barrier for a one-
dimensional catalyst has been reported in [5]. The smaller ∆UC:S→C:P , the faster the substrate
bond will break, as shown in ESI Fig. 2. The first term in (ESI Eq. 3) reaches its minimum when
Lc = 2rmin + rcutoff. This threshold marks when the catalyst is geometrically completementary to
the transition state. As a consequence, the substrate bond can be strained and the cleaving of the
bond accelerated. Note that despite the large interaction energy εcs available, the catalyst only
accelerates the reaction for a small subset of geometries, in agreement with Pauling’s principle of
transition state stabilization [6]. For this subset of geometries, the isotropic interaction with the
catalyst becomes directional.

V. CONSTRAINTS ON PARTICLE POLYDISPERSITY

Particle polydispersity δσ (particle diameter is σ ± δσ) affects the three bonds formed along the
catalytic axis in configuration C:S, changing the distance at which the particles in the catalyst are
fixed to Lc ± 3δσ. Since catalysis requires Lc = L0 ±∆Lc/2, with ∆Lc = 3 · (rcutoff − rmin) and
L0 the middle of the allowed range, catalysis is guaranteed if 3δσ < ∆Lc/2. For the parameters
in our model, that is, rcutoff = 1.1 and rmin ≈ 1.03, ∆Lc = 3.3 − 3.09 = 0.21σ, which leads
to maximal allowed polydispersity δmax

σ = 3.5%. Results in Fig. 2A in the main text, which
correspond to a specific slice of the parameter space for εs = 14, show that catalysis occurs for
∆Lstrict

c = 0.09σ and maximal allowed polydispersity δmax
σ = 1.5%. Therefore, for rcutoff = 1.1, the

allowed particle polydispersity is δmax
σ ∈ (1, 3.5) approximately. Such polydispersity control has

been previously reported in the fabrication of colloidal spheres with diameters of a few hundreds
of nanometers [7], where authors report polydispersity of 2%, or in the fabrication of emulsion
droplets with microfluidic devices [8].

Increasing the interaction range allows us to increase the tolerated particle polydispersity, since
Lc ∼ f(rcutoff − rmin). While for rcutoff = 1.1, δr = rcutoff − rmin = 0.07, by choosing the
experimentally accessible values rnew

min = 1.07 and rnew
cut = 1.3, as is the case for DNA-mediated

interactions [9, 10], we can increase the range of catalyst geometries for which catalysis can occur
to δrnew = 0.23. This would then yield allowed polydispersity δmax

σ > 10% for the Lc within the
necessary conditions. Likewise, by increasing rcutoff, we expect the growth of the parameter range
in the more efficient (strict) regime for catalysis (the red area in Fig. 2(a)) by some factor α, i.e.,
∆Lstrict,new

c = α · ∆Lstrict
c . This would then relax the contraints on particle polydispersity. We

verify this by running simulations for rnew
cutoff = 1.2 (rnew

min = 1.05) and rnew
cutoff = 1.3 (rnew

min = 1.07).
Results in ESI Fig. 3 show that for rnew

cutoff = 1.3 the range of Lc values for which catalysis occurs
increases by a factor α ∼ 2.5, relaxing the constraints on particle polydispersity.
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ESI Figure 3. Simulated catalytic efficiency TS→P /TC+S→C+P as a function of the catalyst geometry Lc

for three different interaction ranges rcutoff. Results correspond to an average over > 100 simulations.

VI. SIMULATION DATA AND STATISTICS FOR FIG. 2 IN THE MAIN TEXT

To produce Fig. 2 in the main text, we initiate an ensemble of simulations in C + S by placing
the substrate at a random r > rcutoff distance from both particles in the catalyst in a simulation
box with side L/σ = 7.5, and record the time it takes two monomers to be released in solution in
the presence of the catalyst. This time is compared to the timescale of the spontaneous reaction
(see ESI Information section II). Each time a monomer is released in solution, it is systematically
blocked, that is, it is not allowed to interact with any other particle. We only perform simulations
for the reversible case, where the substrate bond can reform in the presence of the catalyst through
the C:P → C:S transition. To account for the irreversible case, which concerns Fig. 2 in the main
text, we use the same simulation trajectories, but only keep the trajectory up to the first time the
substrate bond breaks. If the bond breaks after a C:S → C:P or a C·S → C·P transition, we
then simulate the release of the monomer(s) bound to the catalyst by drawing from an exponential
distribution with the rate k(εcs) (ESI Fig. 1B). The number of simulations run for each set of
parameters is shown in ESI Fig. 4.
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ESI Figure 4. Number of observations nobs for each data point reported in Fig. 2 in the main text. The
color bar is capped at nobs = 1000 observations. The gray area in panel (B) indicates that there is no data
in this region. The εcs < εs (green dotted lines) and 3rmin < Lc < 3rcutoff (gree dashed lines) conditions
for catalysis are indicated.
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ESI Figure 5. (A, C) Simulated mean first-passage time for the C·S → C:S (A) and C:P → C:S (C)
transitions as a function of Lc for a system in 2D (blue squares) and 3D (red circles). The vertical dashed
line indicates the Lc = 2rmin + rc threshold. (B, D) First-passage time distributions for C·S → C:S (B)
and C:P → C:S (D) when Lc/3rmin = 1.02, for simulations in two (gray squares) and three (black circles)
dimensions. The solid lines are exponential distributions with rate k = 1/TC·S→C:S and k = 1/TC:P→C:S

taken from (A) and (C), respectively, for the corresponding geometry.

VII. FIRST-PASSAGE TIMES TO BIND AND REFORM THE SUBSTRATE BOND

The C·S → C:S transition is diffusion-limited and only depends on the catalyst geometry.
To measure the mean first-binding time associated to it, we initiate the system in a random
configuration corresponding to state C·S and record the time its takes to reach C:S for the first
time, i.e., the time for the free particle in the substrate to attach to the catalyst. The average
first-binding time diverges as Lc → 3rcutoff, as shown for a system in 2D and 3D in ESI Fig. 5A.
This gives rise to the Lc/3rmin < rcutoff/rmin necessary condition for catalysis and impacts the
trade-off for optimal catalyst geometry. Indeed, the further apart the two particles in the catalyst,
the longer it will take the substrate to fully bind. We note that when Lc/3rmin � 1 (narrow escape
limit), the first-binding time distribution is dominated by an exponential (ESI Fig. 5B).

The C:P → C:S transition is similar to the C·S → C:S process: it is also limited by diffusion
and only depends on the catalyst geometry Lc. We provide the average first-time to reform the
substrate bond, and first-passage time distribution in ESI Fig. 5C and D. These are obtained by
initiating the simulations in C:P and recording the time it takes to reform the substrate bond, i.e.,
reach C:S for the first time.

VIII. MARKOV STATE MODELS

We use Markov State Models (MSMs) to extend our results beyond the parameter range that we
can explore with MD simulations. We first construct a minimal model to account for the system
when free monomers are systematically removed once they are released in solution. The structure
of this model is shown in Fig. 3A in the main text, and it is used to produce Fig. 3B (black lines).
We then extend the model to account for the system when free monomers are removed only if they
diffuse sufficiently far from the catalyst, i.e., r > RDiff. This extended model is used to produce
the results in Fig. 3C and Fig. 3D in the main text.
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A. Minimal MSM

The minimal MSM, depicted in Fig. 3A in the main text, consists of six states, C+S, C·S, C:S,
C:P , C·P and C+P , where each state is characterized by the number and the types of bonds (see
configurations in Fig. 1C in the main text).

We first infer transition rates from numerical simulations by coarse-graining the MD trajectories
into discrete states. The rates are given by kij = pij/τi, where kij is the rate from state i to
state j, τi is the average time the system stays at state i, and pij is the jump probability from
i to j [11]. To extract τi and pij from simulations, we initiate the system in state C + S and
sample the system every τLag = 50 time units recording the formation and breaking of bonds,
where τLag is chosen sufficiently large to ignore barrier recrossings (e.g. immediate reformation
of a bond after breaking) while still allowing us to resolve the states along the catalytic pathway.
This procedure leads to the merging of states C:S and C:P . Transition probabilities are then
computed by measuring the average transition frequency between states [12]. Examples of waiting
time distributions, transition probabilities and simulation-inferred rates are shown in ESI Fig. 6.

To explore the parameter space beyond simulations, we next construct an analytical model for
the rates by classifying the transitions in the MSM into escape and diffusive processes.

1. Escape processes

We describe bond breaking events as barrier escape problems with Arrhenius-like expression for
the rate of the transition, k(ε) = e−Aε+B with A = 0.91 and B = 2.20 (ESI Fig. 1). The broken
bond for transitions C·S → C + S and C·P → C + P corresponds to εcs, and hence, the rate is
k(εcs). The same bond is broken during the C:P → C·P transition, but kC:P→C·P ≈ 2kC·P→C+P

as any of the two monomers attached to the catalyst can be released independently. The bond
broken during the C·S → C·P transition is the scissile bond in the substrate, and therefore, the rate
is k(εs). The barrier for C:S → C:P is described by (ESI Eq. 3). The barrier for the C:S → C·S
transition is approximated by

∆UC:S→C·S = U(rmin, εs) + U(rmin, εcs)

− min
r∗s ,r

∗
cs

[
U(rs, εs) + U(rcs, εcs) + U(Lc − rs − rcs, εcs)

]
, (ESI Eq. 4)

where rs represents the distance between the particles in the substrate and rcs the substrate-
catalyst particle distance. The calculations for ∆UC:S→C:P and ∆UC:S→C·S assume that C:S is
strictly one dimensional, which we have shown is true within the range of Lc values necessary for
catalysis (ESI Fig. 2).

2. Diffusive processes

Transitions C + S → C·S, C·S → C:S and C:P → C:S are limited by diffusion. While the first
transition depends on the volume of the system, the two latter are intrinsic to the catalyst design
and only depend on Lc. We verify that in the narrow escape limit, i.e., Lc/3rmin > 1, the first-
passage time distributions for C·S → C:S and C:P → C:S are described by a single timescale (ESI
Fig. 4). To interpolate between the reversible and irreversible cases, we introduce a parameter γ,
such that k̃C:P→C:S = γkC:P→C:S , where γ = 1 accounts for the reversible (diffusion-limited) case
and γ = 0 accounts for the irreversible case. The first-passage time distribution associated with
the C+S → C·S transition is not exponential and depends on the initial distance of the substrate
with respect to the catalyst [13]. To estimate a rate, we map the transition to a search process
in a disk of radius RDiff with reflecting boundary and an absorbing trap with radius r = rcutoff
in the center. To compute the mean first-passage time to reach the absorbing trap starting from
the reflecting boundary, we solve D∆t(r) = −1, where D is the diffusion constant, with boundary
conditions ∇t(r)|r=RDiff = 0 and t(r = rcutoff) = 0. We use the inverse of the mean first-passage
time kC+S→C·S = 1/t(RDiff) as the rate. We note that the necessary and sufficient conditions for
catalysis do not depend on this particular transition, and hence, the value we set for this rate only
impacts the catalyst’s efficiency and not the regions where catalysis emerges. In particular, the
maximal catalytic efficiency, depicted in Fig 3B in the main text, is obtained in the limit when
kC+S→C·S � 1.
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ESI Figure 6. (A) Waiting time distributions for states C+S, C·S, C·P and the merged state (C:S+C:P ),
obtained by recording the time it takes the system to form and break bonds (blue) or by coarse-graining
the MD trajectories with a lag time τLag = 50 time units, which allows us to fit an exponential distribution
to the data (dashed line) and to extract the average waiting time 〈τi〉. Simulation parameters are εs = 15
and εcs = 10.5. Results correspond to the reversible limit. (B) Transition probabilities pij from states
i = C·S and i = (C:S +C:P ) as a function of the catalyst binding strength εcs. Legend indicates states j
where the system transitions next. (C) Transition rates kij = pij/ 〈τi〉 as a function of the catalyst binding
energy εcs: (1) kC·S→C+S , (2) kC+S→C·S , (3) kC·S→(C:S+C:P ), (4) kC·S→C·P , (5) k(C:S+C:P )→C·S and (6)
k(C:S+C:P )→C·P .

B. Validation

To validate the coarse-graining and discretization of the catalytic path into states, we compare
the efficiency of the catalyst design, i.e., TS→P /TC+S→C+P , in simulations, where the catalytic
pathway is not divided into elementary transitions, to the efficiency using the minimal MSM with
rates inferred from simulations and rates from the analytical model. The comparison is shown in
ESI Fig. 7 for the reversible (γ = 1) and irreversible (γ = 0) cases. The agreement in the reversible
case supports the coarse-graining of the system into states. The way in which data is generated
for the irreversible case (see ESI section VI) might be one of the reasons why the results do not
quantitatively agree for small εcs for the MSM with the simulation inferred rates. Although the
analytical model for the rates underestimates the efficiency of the catalyst in the irreversible case,
the overall scaling agreement between the MSM and simulation data in Fig. 3B in the main text
for both reversible and irreversible cases further support the coarse-graining.
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ESI Figure 7. Comparison of the catalytic efficiency, i.e., TS→P /TC+S→C+P , for a fixed substrate bond
(εs = 15) and catalyst geometry (Lc/3rmin = 1.02) and different εcs for numerical simulations (blue points),
the MSM with the rates inferred from simulation (red crosses, kE) and the MSM using the analytical rates
(dashed black line, kA). Top panel corresponds to the reversible case (γ = 1), while the bottom panel
corresponds to the irreversible case (γ = 0). In all cases, monomers are removed as soon as they are
released in the solution. Simulation results correspond to a box with side L/σ = 15.
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ESI Figure 8. (A) States considered in the extended MSM, when product monomers (blue) are not
immediately removed after they are released in solution and have to diffuse a distance r > RDiff from the
center of the system, where the catalyst is placed (red), to leave it. We now consider that the substrate
and product particles particles can be far (f) or close (c) to the catalyst. (B) Extension of the MSM in
Fig. 3A in the main text to account for the diffusion of the monomers away from the catalyst.
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C. Extended MSM to account for volume

To explore the impact of product inhibition and other volume effects on catalysis, we require
monomers to diffuse sufficiently far away from the catalyst, i.e., r > RDiff, in order to leave the
system, where RDiff is the radius of a disk (sphere) centered around the catalyst (see ESI Fig. 8A).
We extend the MSM in Fig 3A in the main text to 10 states and introduce transitions that describe
the substrate and product particles diffusing towards or away from the catalyst. To estimate a
rate for these transitions, we take the inverse of the mean first-passage time of a search process in
a bounded domain. We compute the mean first-passage time by solving D∆t(r) = −1 with the
appropriate boundary conditions, where D is the diffusion constant [14]. For example, we estimate
the mean first-passage time for the C + S|f → C + S|c transition, where the subscripts f and
c indicate that the substrate is ’far’ (r = RDiff) and ’close’ (r = rcutoff + δ, with δ � 1) from
the catalyst, by mapping the transition to a diffusion process in a disk (sphere) with boundary
conditions t(r = rcutoff + δ) = 0 and ∇t(r)|r=RDiff = 0. The first condition represents an absorbing
target of radius r = rcutoff + δ in the center of the domain and the second one accounts for the
reflecting boundary at r = RDiff. The mean first-passage time will depend on the starting point of
the process t = t(r0), which we set at r0 = RDiff, corresponding to state C +S|f . We estimate the
first return time for C + S|c → C·S by assuming a similar setup, but setting the starting point of
the process at r0 = rcutoff + δ and absorbing boundary at r = rcutoff. Transitions C·P |c → C:P ,
C+P |2c → C·P |c and C+P |c → C·P |f also fall within this category. We note that results depend
on the choice of δ, and we use δ = 0.01 to produce Fig. 3C and D in the main text.

For transitions requiring the monomers to diffuse away from the catalyst, such as C·P |c → C·P |f
and C + P |2c → C + P |c, we consider t(r = RDiff) = 0 and ∇t(r)|r=rcutoff = 0 as boundary
conditions, and set the starting point of the process at r0 = rcutoff. We note that despite our
procedure to estimate the rates, the first-passage time distributions for these processes are not
exponential [13, 15], and therefore, a rate cannot be properly defined. The comparison between
MD simulation data in Fig. 3C in the main text, and ESI Fig. 10 below show qualitative agreement.
Further improvements of the model regarding diffusive processes are left as future work.

IX. NECESSARY CONDITIONS FOR CATALYSIS.

We derive the necessary conditions for catalysis when monomers are systematically removed
from the system (MSM in Fig. 3A in the main text) by comparing the mean first-passage time
from C + S to C + P , i.e., TC+S→C+P , to the mean reaction time in the absence of catalyst,
TS→P = 1/kS→P . TC+S→C+P can be analytically computed [16] and the criterion for catalysis,
TS→P /TC+S→C+P > 1, takes the form

1

kS→P
>

1

kC:S→C:P
+

1

kC:P→C·P
+

1

kC·P→C+P

+
kC:P→C:S

kC:S→C:P kC:P→C·P
+

kS→P

kC·S→C:SkC·P→C+P

×
(
1 +

kC:S→C·S kC:P→C:S

kC:S→C:P kC:P→C·P
+

kC:S→C·S

kC:S→C:P

)
, (ESI Eq. 5)

where ki→j is the rate to transition from state i to state j. The above equation is a sufficient
condition for catalysis of the form TS→P >

∑
n Tn. Each individual term on the right hand side of

the equation leads to a necessary condition for catalysis that can be subsequently translated into
physical and geometrical constraints in our model.

The first necessary condition in (ESI Eq. 5), kS→P < kC:S→C:P , pertains to the catalytic mech-
anism and leads to Lc > 3rmin and εcs > 0. The second and third necessary conditions in
(ESI Eq. 5), kS→P < kC:P→C·P and kS→P < kC·P→C+P , are associated to product release and
lead to εcs < εs. The fourth necessary condition in (ESI Eq. 5) is non trivial only in the reversible
case, when C:P → C:S is possible. In the irreversible case, this transition is not allowed and
hence, kC:P→C:S = 0. The last necessary condition on the right hand side in equation (ESI Eq. 5)
stems from the alternative pathway that the substrate may take in the presence of the catalyst to
produce products, i.e. C·S → C + P , without visiting C:S. This shortcut to the final state of the
reaction relaxes the constraint on kC·S→C:S , which does not have to be as fast as the spontaneous
reaction for catalysis to emerge.
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ESI Figure 9. (A) Minimal reaction scheme that we use to explain the scaling of the maximal catalytic
efficiency in the reversible and irreversible limits. (B) MSM model results for the maximal catalytic
efficiency when γ = 0 and monomers are removed from the system if r > RDiff, for RDiff/σ = 5 (black solid
line) and RDiff/σ = 100. (Inset) Zoom in the small εs region showing MD simulation data for RDiff/σ = 5
(blue triangles) and RDiff/σ = 40 (red triangles).

Note that (ESI Eq. 5) is independent of TC+S→C·S , the average time it takes the substrate to
diffuse to the catalyst. This is because the substrate can always dissociate spontaneously into two
monomers in a single step in the presence of the catalyst. As here we consider that the reaction
ends when two monomers have been released into solution (systematic product removal), any
catalyst design that successfully accelerates the production of monomers will only contribute to
reducing the mean reaction time. In other words, as long as the product is systematically removed,
catalysis is an intrinsic property of our catalyst design, and therefore independent of the volume
of the system. The efficiency of the catalyst, however, depends on volume.

X. SCALING OF THE MAXIMAL EFFICIENCY

To understand why the maximal catalytic efficiency scales exponentially with εs in the irreversible
case and why it saturates in the reversible case (Fig 3B in the main text), we propose a minimal
reaction scheme that captures the essential features of our model. This scheme is shown in Fig. 9
and it contains four states, where the CS → CP transition accounts for the chemical transformation
step and CP → C + P represents product release. We model the rates as

ks = e−εs k+1 = kse
αεcs k+2 = e−εcs k−1 = γkCP→CS , (ESI Eq. 6)

and we leave k+0 and k−0 unspecified as they do not take part in the sufficient condition for catalysis
(see ESI section IX). Here α represents the catalyst’s ability to reduce the rate of the spontaneous
reaction, kCP→CS is the diffusion-limited rate of the reverse reaction in the catalyst and γ is the
parameter that regulates such rate. Note that for fixed εs, the larger εcs, the larger k+1 will be,
but the smaller k+2 , recovering the Sabatier principle of optimal intermediate binding strength. To
make the notation compact, we use γkCP→CS ≡ γ̃. Catalysis requires α > 0 and εcs < εs. When
α = 1, the catalyst cancels the barrier of the spontaneous reaction.

We determine the efficiency of the catalyst by computing the mean first-passage time to reach
the product state in the presence and absence of the catalyst, which yields

TS→P

TC+S→C+P
=

k+0 k
+
1 k

+
2 + k+1 k

+
2 ks + k−0 (k

−
1 + k+2 )ks

[k+1 k
+
2 + k−0 (k

−
1 + k+2 ) + k+0 (k

−
1 + k+1 + k+2 )]ks

. (ESI Eq. 7)

A. Irreversible case: exponential scaling

In the limit when k+0 → ∞ and γ̃ = 0, the mean-first passage time to produce two product
monomers in the presence of the catalyst is

TC+S→C+P =
1

k+1
+

1

k+2
= eεcs + eεs−αεcs , (ESI Eq. 8)
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which is minimized by

ε∗cs =
εs + logα

1 + α
. (ESI Eq. 9)

As a result, the maximal catalytic efficiency for εs → ∞ scales as

lim
εs→∞

(
TS→P

TC+S→C+P

) ∣∣∣
εcs=ε∗cs

=
1

1 + α
e

1
1+α (εs+logα) ∼ eα̃εs , (ESI Eq. 10)

recovering the scaling in Fig. 3B in the main text for the irreversible case, where α̃ = (1 + α)−1.
Note that when α = 1, the optimal binding strength ε∗cs = εs/2 and α̃ = 0.5. For our MD results
in Fig 3B, αMD = 0.50± 0.04.

B. Reversible case: Saturation

When γ̃ 6= 0, TC+S→C+P in the limit when k+0 → ∞ is given by

TC+S→C+P =
1

k+1
+

1

k+2
+

k−1
k+1 k

+
2

= eεcs + eεs−αεcs + γ̃e(1−α)εcs+εs , (ESI Eq. 11)

and the catalytic efficiency is

TS→P

TC+S→C+P
=

eεs

eεcs + eεs−αεcs + γ̃e(1−α)εcs+εs
=

1

eεcs−εs + e−αεcs + γ̃e(1−α)εcs
(ESI Eq. 12)

Since catalysis requires εs > εcs, in the limit when εs → ∞,

TS→P

TC+S→C+P
=

1

e−αεcs + γ̃e(1−α)εcs
. (ESI Eq. 13)

The catalytic efficiency is maximal when the denominator is the smallest, which is minimized when
εcs = 0. As a result, the maximal efficiency saturates,

TS→P

TC+S→C+P
=

1

e−αεcs + γ̃e(1−α)εcs

∣∣∣
εcs=0

=
1

1 + γ̃
, (ESI Eq. 14)

in agreement with the cases for γ 6= 0 in Fig. 3B in the main text.

XI. EMERGENCE OF CATALYSIS IN 3D

In ESI Fig. 10, we produce Figs. 3C and D in the main text for a system in 3D. To construct ESI
Fig. 10A, we simulate the system at varying εs and RDiff, with fixed catalyst geometry Lc/3rmin =
1.02 and we explore a range of εcs that satisfy εcs < εs. We consider that catalysis emerges for a
given εs and RDiff if there is at least one εcs for which TS→P /TC+S→C+P > 1. We note that since
our resolution in binding energy is ∆εcs/kBT = 1, we may miss designs for which the criterion for
catalysis is satisfied. The results qualitatively agree with the MSM (blue region). MD results in
3D indicate that catalysis emerges at smaller values of εs than in the 2D case, i.e., ε(3D)

s,min < ε
(2D)
s,min.

In ESI Fig. 10B, we show MSM results where catalysis was observed for a range of εs ∈ [2, 30].
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ESI Figure 10. Simulation and MSM data for the system in 3D. (A) Substrate bonds εs for which there
is catalysis when monomers are removed from the system if they diffuse sufficiently far from the catalyst,
i.e., r > RDiff. Simulation data is shown as squares and crosses and the MSM results are shown as a
shaded blue region. (B) MSM results showing values of γ for which catalysis can be observed in 2D (red
region) and 3D (red and blue regions) when monomers are removed from the system if they have diffused
a distance RDiff/σ from the catalyst.
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