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I. ORDERED AND DISORDERED MICROFLUIDIC POROUS MEDIA

Microfluidic porous media devices were designed with precisely the same geometry as Walkama et al. [1] and have a
25 mm long, 4 mm wide, and 50 µm high main channel. The microfluidic channels contain arrays of cylindrical pillars
(diameter, d = 50 µm) arranged in either an ordered hexagonal lattice with a staggered orientation relative to the flow
[2] or a disordered array (Fig. S1). Photolithography masks were generated by first specifying an ordered, hexagonal
array of pillar locations with a lattice constant, a = 120 µm. Disorder arrangements were created by perturbing each
pillar from their original location. New pillar locations were sampled from a random uniform distribution within a
hexagon (Fig. S1) of circumradius, βa, where β is a fraction of the lattice constant in the range 0 ≤ β ≤ 1. Two
different geometries were investigated including an ordered hexagonal array corresponding to β = 0 and a disordered
arrangement with β = 1.
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FIG. S1. Diagram of the ordered geometry (dashed circles) based on a hexagonal lattice having a staggered orientation relative
to the flow direction. The disordered geometry is generated by perturbing the ordered geometry within a circumradius (dashed
hexagon), βa, of the original lattice point.

II. RHEOLOGY OF VISCOELASTIC POLYMER SOLUTIONS

Capillary breakup extensional rheology (CaBER) [3] was used to extract the relaxation time of the viscoelastic
PAA and glycerol solutions (see Methods in main text). A droplet of the viscoelastic fluid was stretched rapidly
between the ends of two circular cylinders, and the capillary bridge diameter, D(t), was measured as a function of
time, t, with a laser micrometer [Fig. S2(a)]. The capillary bridge diameter decays exponentially at early times with
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a decay constant 3τ [4]. A single trial represents a separate loading of the viscoelastic PAA fluid in the CaBER
rheometer, which was tested four times each and averaged to obtain the bridge diameter curves shown. The slope
of this exponential regime [Fig. S2(a), shaded area] was fitted and averaged over several trials (N = 6) to determine
a relaxation time of τ = 1.14 ± 0.1 s. This measured relaxation time for the fluid used in our experiments is well
within the range of relaxation times for similar compositions of PAA and glycerol solutions reported in the literature
(0.1-10 s) [5–7].

The shear viscosity, η, of the viscoelastic solution was measured at various shear rates using a strain controlled
rheometer (TA-2000) with a cone and plate geometry [Fig. S2(b)]. The polymer solution was pre-sheared at a rate
of 1 s−1 for 120 s, then each measurement was held at the respective shear rate for 60 s and measured for 15 s. This
process was repeated for several trials (N = 5) and averaged [Fig. S2(b)]. The shear response of the PAA solution
was fitted by the Carreau-Yasuda model [8], where equation and fitting parameters are provided in Fig. S2(b). The
solutions showed a weak shear thinning of the viscosity from 2 to 0.5 Pa⋅s between shear rates 10−1 and 102 s−1.

FIG. S2. Extensional and shear rheology of PAA solutions. (a) Capillary breakup extensional rheology (CaBER) measurement
of viscoelastic PAA solutions showing the normalized capillary bridge diameter measured as a function of time for several
independent trials (N = 6). The capillary bridge diameter curves are fitted within the exponential regime (shaded area) to
determine their slope and thus the relaxation time of the fluid. (b) Shear rheology reveals a weakly shear thinning behavior
of the PAA solution viscosity within the range of typical shear rates of the porous media experiments. The points represent
the mean, and the error bars indicate the standard deviation measured over several different sample loadings (N = 5). The red
curve is a Carreau-Yasuda model fit of the experimental data, and the equation and fitted parameters are shown.

III. MESH AND TIME-STEP VALIDATION

The pressure drop (∆p) across the porous geometry was used as a metric for mesh and time-step validation [9].
The pressure drops across the ordered porous geometry for different numerical meshes and the different values of the
maximum Courant number are shown in Fig. S3. Along with the global mesh resolution of nx×ny, the five layers close
to each cylinder have been further refined. The Courant number (Co) controls the time-step size in the simulation,
which has been defined as:

Co =
∆t

2V
∑

facesi

∣φi∣, (S1)

where ∆t, V , and φ are the simulation time-step, cell volume, and the cell-face volumetric flux, respectively. ∑facesi
shows the summation over all cell faces. The simulation becomes time-step independent for Comax ≤ 0.04 and mesh
independent for nx × ny ≥ 400 × 400 [Fig. S3(a)]. Therefore, we have used Comax = 0.04 and nx × ny = 512 × 512
throughout the study. The convergence study at a large Wi (Wi = 3) has been shown in Fig. S3(b). The pressure
drop across the geometry at a large Wi fluctuates with time due to the chaotic flow in the ordered porous geometry
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at a large Wi. However, the mean value of ∆p is independent of mesh resolution, and hence the mesh resolution
nx × ny = 512 × 512 is sufficient for the mesh-independent results even at large Wi.

FIG. S3. Normalized pressure drop across the ordered porous geometry for (a) different mesh resolution and different maximum
Courant number (Comax) at a small Wi (Wi = 0.1) and (b) different mesh resolution at a large Wi (Wi = 3).

IV. EXPERIMENTALLY MEASURED DISPERSION TENSOR

Due to the anisotropic spreading of the tracer ensemble as well as the time-dependent nature of the dispersion that
is detailed in the main text (Fig. 3 and corresponding text), we examine the time-dependent dispersion tensor [10, 11]:

DT,L(t̃) = ∫
t̃

0
CT,L(t

′
)dt′. (S2)

Here, CT,L(t̃) is the time-dependent velocity autocovariance detailed in Eqns. (10-11) in the main text, and t̃ = tU/l is
dimensionless time. U is the mean flow speed, and l = a sin 60○ is the stream-wise pillar spacing. The experimentally
measured dispersion tensor components in absolute units are shown in Fig. S4 as a function of dimensionless time.
These results correspond to the normalized dispersion presented in the main text (Fig. 3).

V. PAKDEL–MCKINLEY PARAMETER FOR THE ORDERED POROUS GEOMETRY

The Pakdel–McKinley (M) parameter provides a criterion for purely elastic instability in curved geometries [12]
and is defined as:

M = [
σ11
η0γ̇

τUκ]
1/2

, (S3)

where σ11 is the tensile stress along the streamline direction, κ is the streamline curvature and γ̇ is the magnitude of
the shear rate. Local M fields in the ordered porous geometry simulations at different Wi are shown in Fig. S5. The
maximum value of the M parameter (Mmax) was observed to increase with Wi. Close to the onset of elastic instability,
it is recognized that Mmax becomes greater than a critical value (i.e., Mmax > Mcr as Wi→Wicr) [13]. The location of
Mmax is the most sensitive region for the elastic instability [9, 14]. Just before the elastic instability, Mmax occurs in
the cross-stream side of the cylinder for an isolated cylinder. However, it occurs in the region between the cylinders
for a pair of cylinders [9]. Due to the staggered arrangement of the cylinders in the ordered porous geometry, the
cross-stream sides of each cylinder lie in the region between a streamwise pair of cylinders, which amplifies the value
of Mmax. Therefore, the elastic instability in ordered porous geometry occurs at a smaller Wi compared to isolated
cylinders [9, 15].
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FIG. S4. Comparison of experimentally measured dispersion tensor components with absolute units in the (a) transverse and
(b) longitudinal directions as a function of dimensionless time, t̃. Solid and dashed curves correspond to ordered and disordered
media, and correspond to the non-dimensionalized version in Fig. 3 (main text). Weissenberg number, Wi, and t̃ are based on
flow speeds: U = [3.75, 8.05, 24.40, 82.38, 141.98, 177.65, 223.28] µm/s for ordered media and U = [3.66, 7.96, 19.20, 43.86,
91.83, 186.50] µm/s for disordered media.

FIG. S5. The Pakdel–McKinley (M) parameter in the ordered porous geometry simulations at (a) Wi = 0.1 and (b) Wi = 0.5.
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