
Supplementary information - Early Freezing Dynamics
of an aqueous foam
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Figure 1: Distribution of the bubble radii normalized by the total bubble number for the
three foams presented in Fig 2b.

Resolution of the 1D thermal problem
Given the small size of the bubbles in the studied foam compared to the observed height
of the freezing front in our experiments, it is safe to assume that at a given position z in
the foam column, both the gas and the liquid or solid are at the same temperature. This
allows us to make an effective medium model for our thermal problem.

To predict the dynamics of the freezing front, we solve the heat equation in the three
phases of our problem: solid substrate, frozen foam and liquid foam. The equations solved
are :

(ρCp)s
∂T

∂t = λs
∂2T

∂z2 for z ≤ 0

(ρCp)s
foam

∂T

∂t = λs
foam
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(ρCp)l
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∂T

∂t = λl
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∂2T
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The boundary conditions are the same as1, meaning: T (z −→ −∞) = Ts ; T (z = h(t)) =
Tm ; T (z −→ +∞) = T0.

Assuming constant and uniform volume liquid/solid fraction in the liquid and solid
foam, the thermal conductivities of the liquid and solid foam are given by Equation
(2) in the paper. The volumetric heat capacity of the foam (ρCp)l,s

foam is simply the
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volumetric heat capacity of each component of the foam weighed by its volume fraction:
(ρCp)l,s

foam = ϕl(ρCp)l,s + (1 − ϕl)(ρCp)a where the subscripts l, s and a stand respectively
for liquid, solid and air. For simplicity of notation, we introduce the effusivity of the solid
foam es

foam =
√

λs
foam(ρCp)s

foam. The effusivities of the liquid foam and solid substrate are
defined similarly. The Stefan condition controlling the propagation of the freezing front
is:

ϕlρsL
dh

dt
= λs

foam
∂T

∂z
(h−) − λl

foam
∂T

∂z
(h+)

This set of equations admits a self-similar solution with respect to the variable z

2
√

Ds
foamt

known as the Schwartz solution1. It requires that the position of the freezing front goes
as h(t) = 2α

√
Ds

foamt. The resulting temperature fields are:
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With the contact temperature at z = 0 being:

Tc =
Tf + es

eg
erf(α)Ts

1 + es

eg
erf(α) (1)

The value of α is given by the Stefan condition which becomes:

α = St
es

es
foam

e−α2

√
π(1 + es
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foam

erf(α) − γSt
el

foam
es

foam
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√
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√
Ds
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Dl

foam
α))

(2)

For more concise notation, we introduce γ = T0−Tm

Tm−Ts
. The Stefan number is now

defined as St = (ρCp)s
foam(Tm − Ts)/ϕlρsL with L the latent heat of solidification of the

water solution and ranges between Smin
t = 0.09 and Smax

t = 0.65 in our experiments.
Equation (2) is solved numerically for α to compute h(t).

We note that the contact temperature (1) between the substrate and the frozen layer
has the same expression as found by Thiévenaz et al. but the parameter α now depends
on the initial temperature T0. Moreover, for large values of γ = T0−Tm

Tm−Ts
, the transcendental

equation does not have a solution. This is because the initial temperature of the liquid
phase is too hot and heats the substrate above Tm. In that case, freezing does not occur.
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