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SC1. Calculation of particle density in solution from ICP-AES: 

To determine the number of particles in the as synthesized Au-DDA dispersion, we have 

digested it in aqueous aqua regia solution for 24 h and performed the ICP AES analysis for 

gold. Actual gold concentration in the as synthesised Au-DDA solution was back calculated 

from the experimental ICP-AES data, to be 0.009 M. Knowing the gold atom concentration 

and the average radius of the particles, we have calculated the average number of gold particles 

per mL.  

For this we first found out the number of atoms per sphere. This can be obtained by calculating 

how many unit cells can be fitted within a single NP considering spherical shape of particle 

with radius, R = 2.7 nm. 

No. of unit cell = particle vol./unit cell vol. = 4/3πR
3
/0.068 

Now each unit cell of Au contains 4 gold atoms 

So, a single NP of radius of R, contains 4/3πR
3
/0.068 × 4 = 4848 gold atoms, 

 

Next, the no of spheres in original dispersion was calculated as, 

0.009 M Au-DDA solution contains ~5×10
21

 Au atoms per mL, 

So, 0.009 M Au-DDA solution contains total, 5×6.023×10
21

/4848 ≈ 10
18

 spheres per mL, 

 

Therefore, the average number of gold particles per mL of as synthesized Au-DDA dispersion 

is ~1018 particles/mL. 

 

Determining the number of particles in the experimental nanofluid droplet, was then straight 

forward. We performed 100 times dilution of this 0.009 M Au-DDA solution for TEM 

imaging. Therefore, the particle density in the droplet used for TEM analysis is ~1016 

particles per mL. 
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SC2: Detailed chart of different characteristics that were determined from TEM images. The 

image details can be found in the following pages. 

 

Phase 

Image 

name Number Density Ψglobal 𝒑𝟐𝟓 

Crystalline 
a1 1631 0.0079 0.805 0.0153 

a2 657 0.0081 0.871 0.0213 

Hexatic 

b1 983 0.0099 0.762 0.0406 

b2 1955 0.0094 0.65 0.045 

b3 4050 0.0084 0.665 0.219 

b4 3217 0.0093 0.694 0.1041 

b5 1959 0.0094 0.66 0.0607 

b6 3443 0.0069 0.623 0.0296 

b7 2166 0.0176 0.782 0.147 

b8 2433 0.0198 0.726 0.116 

b9 2214 0.0106 0.782 0.072 

Isotropic 

c1 1790 0.0087 0.55 0.1016 

c2 2471 0.0075 0.534 0.163 

c3 3281 0.0072 0.54 0.159 
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Supporting Figures 

 

 

 

Figure SF1. Large-area NPML images taken at low magnification from different part of the 

TEM grid. a) Order-disorder transition across a thick particle assembly is observed. b) Particles 

assembly changes from ordered to disordered as we move closer to the centre of the image 

from the edge. c) A single NPML composed of mostly hexagonally assembled NPs. d) Dense 

close pack arrangement of NPs with highly ordered self-assembly of NPs.   
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SF2 A: High-magnification TEM images of different locations of a NPML. a1-a3) Crystalline, 

b1-b9) Hexatic, c1-c3) Isotropic-fluid phases. 
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SF2 B: Histogram plot for the three different particle features counting ~24,000 particles taken 

from all the images in our collection as shown in fig.  SF2 A. The average values are given in 

the inset of the graphs. 
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SF3 A: Screening of different 𝑝𝑥 values, where x = 5—50%. The representative images from 

the manuscript figure 1a were analysed and compared. All the scale bars are 20 nm. The 

variation in the 𝑝𝑥-values was plotted with percentage deviation. At the 25% deviation (𝑝25), a 

line is indicated as the descriptor for identifying the three different phases.   
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SF3 B: Screening of different 𝑝𝑥 values, where x = 5—50%. Three images taken from figure 

SF2 A were analysed and compared. The variation in the p-values was plotted with percentage 

deviation. At the 25% deviation (𝑝25), a line is indicated as the descriptor for identifying the 

three different phases.   
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SF3 C: Screening of different 𝑝𝑥 values, where x = 5—50%. Three images taken from figure 

SF2 A were analysed and compared. The variation in the p-values was plotted with percentage 

deviation. At the 25% deviation (𝑝25), a line is indicated as the descriptor for identifying the 

three different phases.   
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SF3D: The mean square errors (MSEs) calculated from the three repeated sets of measurements 

of three different sets of images for the crystalline, hexatic, and isotropic-fluid phases, as shown 

above (Fig. SF3 A-C). The MSE is minimum at 𝑝25.   

 

 

 

 

 

SF4: Schematic that displays the origin of non-planarity between the two unequal size particles 

sitting next to each other on a flat surface. The non-additivity (Δ) in the calculation of centre-

to-centre distance between the two unequal size particles is given as a function of the inclined 

angle (θ). This inclination give rise to the planar strain in the monolayer.  
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Supporting Algorithms 

SA1: Algorithm for obtaining geometrical properties of the NPs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Import Libraries 

Import Image 

Pre-processing  

Thresholding and Segmentation 

Obtaining moments from contours 

Roundness 

parameter 
Centroids Equivalent 

Diameter 

NN distance 
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SA2: Algorithm for calculating Radial Distribution Function (RDF) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

During each increment obtain number density 

in that region 

Obtain all centroids 

Find Euclidean distance between one centroid 

and all other centroids 

Sort distances  

Identify the smallest distance and longest 

distance for i
th

 particle 

Let the smallest distance (NND) be defined as 

‘r’ 

Define a ‘dr’ value and increment it till the 

upper limit i.e. longest distance is reached 

Calculate 𝑔𝑟 =
𝜌𝑟

2𝜋𝑟𝜌𝑡
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SA3: Algorithm for finding Nearest Neighbour (NN) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Obtain all centroids 

Select a reference particle, from which 

Euclidean distance between all the other 

particles are to be considered 

In each calculation if the distance becomes less 

than  2×ED, append the centroid as NN 

centroid 

Prepare a list of NN centroids 
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SA4: Algorithm for calculating bond order correlation function (BOCF). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Append the number density and 𝜓
𝑘
 values for each 

increment 

Define a ‘dr’ value and increment it till the upper 

limit i.e. longest distance is reached 

Calculate 𝑔
6

=
𝜌𝑟<𝜓𝑘

∗𝜓𝑗>

2𝜋𝑟𝜌𝑡

 

Obtain all centroids 

Find Euclidean distance between one centroid and 

all other centroids 

Sort distances  

Qualify a centroid as Nearest Neighbour(NN) for k
th

 

particle if their distance < 2×ED (k) 

Create a list of NN and assign vectors to them 

starting from k
th 

particle as origin 

Calculate angles (in radians) between these vectors 

Calculate 𝜓
𝑘

=
1

𝑛
σ 𝑒−𝑖𝜃𝑗𝑘𝑛

𝑗=1  where Ɵ is the angle 

between j
th

 and k
th

 vector 

Identify the smallest distance and longest distance 

for k
th

 particle 

Let the smallest distance (NND) be defined as ‘r’ 
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SA5: Algorithm for probability of size deviation mapping  

                                                                                                                                                     

  
Select image 

Pre-process it 

Carryout thresholding and segmentation 

Obtain centroids and equivalent diameter 

Calculate mean of equivalent diameter 

For i
th 

particle calculate 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =
𝑒𝑑𝑖−𝑒𝑑𝑚𝑒𝑎𝑛

𝑒𝑑𝑚𝑒𝑎𝑛
 and perform it for all particles 

If ∆ deviation between particle i and particle j < 0.001 then append them together as 

similarly deviated particles 

Calculate Probability of Deviation =  
𝑁𝑜. 𝑜𝑓 𝑠𝑖𝑚𝑖𝑖𝑙𝑎𝑟𝑙𝑦 𝑑𝑒𝑣𝑖𝑎𝑡𝑒𝑑 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑖𝑛 𝑎 𝑙𝑖𝑠𝑡

𝑡𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
 

Map the obtained probability values using the centroids of particles 
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SA6: Algorithm for calculating Hexatic Order Parameter 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Obtain all centroids 

Find Euclidean distance between one centroid and all 

other centroids 

Sort distances  

Qualify a centroid as Nearest Neighbour (NN) for i
th

 

particle if their distance < 2×ED (i) 

Create a list of NN and assign vectors to them starting 

from i
th 

particle as origin 

Calculate angles(in radians) between these vectors 

Calculate 𝜓
𝑘

=
1

𝑛
σ 𝑒−𝑖𝜃𝑖𝑗𝑛

𝑗=1  where Ɵ is the angle 

between i
th

 and j
th

 vector 

Calculate |𝜓𝑘
∗𝜓𝑘| to obtain real hexatic order values 
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SA7: Algorithm for calculating Coordination Number (CN)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Import Image 

Pre-process it. Carry out thresholding and 

segmentation 

Obtain centroids from contours  

Find all center-to-center Euclidean 

distances 

If Euclidean distance < 2×ED 

No Yes 

Reject Append as NN 

Count if CN=6 

No Yes 

Identify centroids as CN6 Identify centroids as NC6 



19 
 

SA8: Algorithm for strain calculation 

The following scheme was utilized: 1) Finding deflected position: Particle centroids (that reside 

within each Voronoi polygon) were first connected using a Delaunay triangulation (DT, a 

complementary technique to Voronoi tessellation) mesh, so that every vertex of a triangle 

would represent a unique centroid. In our case, the triangles are irregular in shape depending 

on the position of the centroids, therefore, the current centroid’s locations are marked as the 

deflected positions where the deflection is considered to arise from a hypothetical undeflected 

point. 2) Finding hypothetical undeflected position: To find out the corresponding undeflected 

points for each centroid, we used a set of custom-made algorithms. First, we considered each 

side of a polygon (which connects two points of a triangle) to find out the hypothetical third 

equilibrium point. Likewise, iterating the method for all other sides of the polygon we obtained 

a set of points enclosed within the polygon (for example, we get six points for a hexagon). In 

the next step, we calculated the minimum and maximum values of x- and y- coordinate taking 

account of all the points obtained from the previous step. By this, we reached a centroid zone, 

that has the most probable location for the hypothetical undeflected point for the central 

particle. Finally, we considered the geometric center of the polygon by taking average of all 

the vertices of the polygon and subtract it one-by-one from the countable set of imaginary 

points present within the centroid zone. The result with minimum difference value indicates 

the ideal centroid position which has almost equal distances from all the vertices of the polygon. 

3) Calculating planar strain: Once the deflected and undeflected positions for each point were 

determined, we apply the constant strain triangle method to obtain the planar strain elements 

(two planer stain and one shear strain) for each triangle (S1).  

[

𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

] = 𝐵

[
 
 
 
 
 
 
𝑑1,𝑥

𝑑1,𝑦

𝑑2,𝑥

𝑑2,𝑦

𝑑3,𝑥

𝑑3,𝑦]
 
 
 
 
 
 

 ; 𝐵 =
1

2𝐴
[
𝑦2 − 𝑦3 0 𝑦3 − 𝑦1

0 𝑥3 − 𝑥2 0
𝑥3 − 𝑥2 𝑦2 − 𝑦3 𝑥3 − 𝑥2

     
0 𝑦1 − 𝑦2 0

𝑥1 − 𝑥3 0 𝑥2 − 𝑥1

𝑦3 − 𝑦1 𝑥3 − 𝑥2 𝑦1 − 𝑦2

] 

where, [x], [y] are the coordinates, and [𝑑] is the displacement vector of the three vertices of 

the triangle, A is the triangle area, 𝜀𝑥, 𝜀𝑦 are the isotropic components (compression/dilation) 

and 𝛾𝑥𝑦 is the shear part. The three-element strain vector was then utilized to calculate the mean 

principal strain (𝜀𝑚𝑎𝑥,𝑚𝑖𝑛) and the torsion angle (𝜃) using the following transformations,S1 

𝜀𝑚𝑎𝑥,𝑚𝑖𝑛 =
𝜀𝑥𝜀𝑦

2
± √(

𝜀𝑥𝜀𝑦

2
)
2

+ 𝛾𝑥𝑦
2   and tan 2𝜃 =

2𝛾𝑥𝑦

𝜀𝑥−𝜀𝑦
, From the mean principal strain of the 

constituting triangles, the average planar strain of each Voronoi cell is calculated.  
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