Supporting Information: 3D printable adhesive elastomers with dynamic covalent bond rearrangement

Shiwanka V. Wanasinghe^{1,+}, Brent Johnson^{2,+}, Rebekah Revadelo², Grant Eifert², Allyson Cox³, Joseph Beckett⁵, Timothy Osborn³, Carl Thrasher^{4,*}, Robert Lowe^{2,*}, and Dominik Konkolewicz^{1,*}

¹Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056
²Department of Mechanical and Aerospace Engineering, University of Dayton, Dayton, OH 45469
³Additive Manufacturing Technology Development Group, University of Dayton Research Institute, Dayton, OH 45469
⁴Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142
⁵Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109

+Contributed Equally *Corresponding authors

Figure S1: Self-Healing of HEA:BA (100:0) with TMSDA: EDDT (1:1) (Formulation 7)

Figure S2: Stress-strain curves for the materials with HEA:BA (100:0) with TMSDA: EDDT (1:0.75) (Formulation 6).

Figure S3: Self-Healing curves of HEA:BA (100:0) with TMSDA: EDDT (1:0.75) (Formulation 6)

Figure S4: Stress-strain curves for the materials with HEA:BA (100:0) with TMSDA: EDDT as (1:1) (Formulation 7)

Figure S7: Stress-strain curves for the self-healed materials with HEA:BA (80:20) with TMSDA:EDDT (1:1) (Formulation 5)

Figure S8: Stress-strain curves for the materials with HEA:BA (80:20) with TMSDA:EDDT (1:0.75) (Formulation 4)

Figure S9: Stress-strain curves for the heated materials with HEA:BA (80:20) with TMSDA:EDDT (1:0.75) (Formulation 4)

Figure S10: Stress-strain curves for the self-healed materials with HEA:BA (80:20) with TMSDA:EDDT (1:0.75) (Formulation 4)

Figure S11: Stress-strain curves for the materials with HEA:BA (50:50) with TMSDA:EDDT (1:1) (Formulation 2)

Figure S12: Stress-strain curves for the heated materials with HEA:BA (100:0) with TMSDA:EDDT (1:0.75) (Formulation 6)

Figure S13: Stress-strain curves for the self-healed materials with HEA:BA (100:0) with TMSDA:EDDT (1:0.75) (Formulation 6)

Figure S14: Stress-strain curves for the heated materials with HEA:BA (100:0) with TMSDA:EDDT (1:1) (Formulation 7)

Figure S15: Stress-strain curves for the self-healed materials with HEA:BA (100:0) with TMSDA:EDDT (1:1) (Formulation 7)

Figure S16: Stress-strain curves for various formulations in lap shear, with 3D-printed PLA as the lap adherend

Figure S17: Stress-strain curves for Formulation 4, TMSDA:EDDT (1:0.75) with HEA:BA (80:20), bonded at room temperature and bonded at 90 $^{\circ}$ C for 16 hours.

Figure S18: Stress-strain curves for Formulation 4, TMSDA:EDDT (1:0.75) with HEA:BA (80:20), against various lap adherend materials.

Table S1: Percent Method of Failure for different formulations on 3D printed PLA laps

Formulation	Adhesive	Cohesive	Inconclusive*
1	100%		
3	100%		
4	50%	25%	25%
5		80%	20%
6	100%		

*Inconclusive indicated the tester either did not record or could not conclude a failure method (i.e. failure method was not visible / could not be determined, or failure occurred both cohesively and adhesively)