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Supplementary Information

A. Asymptotic constants for a bonded layer

The asymptotic constants ag and a; can be evaluated as follows (Alexandrov
and Pozharskii, [2001)):
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In the case of an isotropic elastic layer bonded to a rigid base, the kernel
function is given by

2s¢sinh(2u) — 4u

(A.2)

L =
() 25ccosh(2u) + 1 + 32 + 4u2’
where 7 = 3 — 4v is Kolosov’s constant, and v is Poisson’s ratio.
The normalized asymptotic constants are defined as
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In view of (A.1)), we have
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where L(u) is given by (A.2)).

Practically, the improper integrals (A.1)) and (A.3)) can be evaluated numer-
ically by replacing the infinite upper limit of the integral by a finite upper limit,
that is
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Figure 1: Accuracy of the numerical evaluation of the asymptotic constants ag
(line 0) and a; (line 1), which is the same as that for o and oy.

The upper bound for the error of such approximation is illustrated in Fig.
for the case v = 0.5. The error is exponentially decaying with the increase of
the upper limit M in the definite integral (A.4)).

B. Accuracy of the approximate solutions

Let us introduce the notation
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The fourth-order asymptotic solution obtained by [Vorovich et al.| (1974) has
the following form:
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Using the asymptotic solution (B.2)), (B.3) and the dimensionless variables
(B.1), we can represent the approximate force-displacement relation in the para-

metric form as A .
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The fourth-order asymptotic solution derived by |Argatov and Sabinal (2013),
which is asymptotically equivalent to , , has the form
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The second-order asymptotic solution is recovered from Eqs. (B.6)) and (B.7)
by dropping the terms containing a,, that is as follows (Argatov), 2010)):
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Observe that Egs. (B.2)—(B.7) utilze only the first two asymptotic constants

ao and a;. The sixth-order asymptotic solution derived by (2001)),

which incorporates also the third asymptotic constant as, has the following

form: A . 198
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The fourth-order asymptotic approximation for the force-displacement rela-
tion in the explicit form, which was obtained by (2011), has the form
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and simplifies to the second-order approximation as follows (2011)):
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We recall that for a bonded incompressible layer, we have ag = 1.77022, a1 =
—0.95777, and as = 0.43736. In this special case, the following approximate
solution was obtained by [Dimitriadis et al. (2002):

F= %153/2 (1 + 113362 4 1.2836 + 0.7695°/2 + 0.097582). (B.13)

A much more accurate solution was derived by |Garcia and Garcia| (2018)) in
the form

F = 353/2 <1 + 113362 4+ 1.4976 + 1.4695°/2 + 0.755S2>, (B.14)

which differs from (B.13]) only by the expansion coefficients.
The accuracy of the analytical solutions outlined above have been tested

using the following accurate analytical approximation obtained by
(2021):
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Figure 2: Accuracy of the approximate solutions as a function of the relative
contact radius.

The results of the comparison are presented in Figs. [2] and [3] where the
following legend applies: Curve 1 corresponds to the fourth-order asymptotic
approximation in the explicit for (Argatov, [2011)); Curve 2 corresponds
to the analytical approximation (B.14) (Garcia and Garcial, [2018); Curve 3 cor-
responds to the fourth-order asymptotic approximation in the parametric form
(B.6), (Argatov and Sabinal [2013); Curve 4 corresponds to the fourth-

order asymptotic approximation in the parametric form , 1' iVorovich
et al., [1974]); Curve 5 corresponds to the analytical approximation (B.13]) (Dim-
itriadis et al. 2002); Curve 6 corresponds to the sixth-order asymptotic ap-
proximation in the parametric form (B.9), (B.10) (Argatov, 2001); Curve 7
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Figure 3: Accuracy of the approximate solutions as a function of the relative
indentation depth.

corresponds to the second-order asymptotic approximation in the explicit form
(B.12) (Argatov} [2011)); Curve 8 corresponds to the second-order asymptotic

approximation in the parametric form (B.§]) (Argatov, 2010).

C. Indentation scaling factor

According to the fourth-order asymptotic solution (B.11)) obtained by
(2011)), the indentation scaling factor can be evaluated as
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In view of (A.1) and (A.2)), the variation of the scaling factor f as a function
of w depends on the layer Poisson’s ratio v. This is illustrated in Fig.
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Figure 4: Indentation scaling factor for a paraboloidal indentation of a bonded
elastic layer.
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