Water repelling behavior of 1-D hematite nano-network

Shyamapada Patra,¹ Sriparna Chatterjee,^{2,*} Pritam Das,¹ Shyamal Chatterjee,^{1,*}

¹School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Jatni,

752050, India

²CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, India

*Email: sriparna@immt.res.in and shyamal@iitbbs.ac.in

140 (a) 120 100 80 No of NR 60 40 20 0 15 20 25 10 30 Diameter (nm)

Supplementary data

Fig. S1, the as-grown pristine hematite nanorods have uniformly grown on substrate with a diameter of about 15 ± 5 nm.

Fig. S2, the as-grown pristine hematite nanorods have uniformly grown on substrate with a length about 75 ± 10 nm.

Fig .S3, the energy-dispersive X-ray spectra (EDX) confirm the presence of Fe and O in the pristine sample.

Fig .S4, the energy-dispersive X-ray spectra (EDX) confirm the presence of Fe and O in the irradiated sample at the ion fluence of 5×10^{16} ions.cm⁻².

Fig .S5, the irradiated nano-network contains pores with sizes ranging from 10 to 100 nm at ion fluence of 3×10^{16} ions.cm⁻².

Fig .S6, I-V characteristic of the pristine sample (black) and 5 keV Ar⁺ ions used at ion fluences of 1×10^{16} (blue), 3×10^{16} (red), and 5×10^{16} ions.cm⁻² (green). The calculated electrical conductivity for pristine samples is 1.09 Sm^{-1} . The samples were systematically irradiated with 5 KeV Ar⁺ at fluences 1×10^{16} , 3×10^{16} , and 5×10^{16} ions.cm⁻² and they yield current in the range -0.014 to 0.013 μ A, -0.023 to 0.022 μ A, and -0.039 to 0.031 μ A in the same range of voltage and the corresponding conductivities are 1.12 Sm^{-1} , 2.12 Sm^{-1} , and 3.01 Sm^{-1} respectively.

